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Abstract: This article proposes a Radial Basis Function Artificial Neural Network (RBF-ANN) to
classify tempered steel cams as correctly or incorrectly treated pieces by using multi-frequency
nondestructive eddy current testing. Impedances at five frequencies between 10 kHz and 300 kHz
were employed to perform the binary sorting. The ANalysis Of VAriance (ANOVA) test was employed
to check the significance of the differences between the impedance samples for the two classification
groups. Afterwards, eleven classifiers were implemented and compared with one RBF-ANN classifier:
ten linear discriminant analysis classifiers and one Euclidean distance classifier. When employing the
proposed RBF-ANN, the best performance was achieved with a precision of 95% and an area under
the Receiver Operating Characteristic (ROC) curve of 0.98. The obtained results suggest RBF-ANN
classifiers processing multi-frequency impedance data could be employed to classify tempered steel
DIN 100Cr6 cams with a better performance than other classical classifiers.

Keywords: nondestructive testing; eddy current; tempering process; radial basis function neural
network; multi-frequency; analysis of variance

1. Introduction

Nondestructive testing (NDT) techniques are analysis methods employed to inspect samples
without causing permanent damage or modifications to them. Eddy current testing has been one of the
most popular NDT techniques, and has been widely implemented as an alternative to metallography [1]
and indentation hardness tests [2]. Eddy current testing is based on Faraday’s electromagnetic
induction law, which was proposed in 1831, and on Hughes’ experiments, which were performed
in 1879. Hughes found changes in the properties of a coil when it approached metals with different
electric conductivities and magnetic permeabilities. The usage of eddy current testing techniques has
significantly increased since the 1950s in the aeronautical [3,4] and nuclear [5,6] industries, among
others. In recent years, state-of-the-art electronic components and processors have been applied to build
eddy current instrumentation [7–9]. Moreover, eddy current testing techniques have been employed
to analyze materials: Konoplyuk predicted the matrix microstructure in ductile cast irons [10], Mercier
et al. classified steel decarburizing samples [11], and Wrzuszczak et al. detected defects on conducting
materials [12].

NDT techniques provide data that can be employed to decide, for example, if the predominant
microstructure of an analyzed steel sample is martensite, that provide enough hardness to machinery
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parts. This decision can be made either by a trained and experienced person or by an expert system.
Artificial Neural Networks (ANNs) are processing tools inspired by the human nervous system, which
can implement expert systems using their input-output mapping capability [13]. Various authors have
combined ANNs and NDT techniques in the literature: Wang et al. employed a back propagation ANN
to monitor the stress and the temperature of steel using the Barkhausen noise theory [14]; Sathiyasekar
et al. proposed a system based on an ANN and fuzzy logic to predict the quality of the insulation
system of rotating machines [15]; Silva et al. designed methods based on Multi-Layer Perceptron
ANNs (MLP-ANNs) and Support Vector Machines to detect the sigma phase in duplex stainless steels
analyzing induced magnetic field signals [16]; Lee et al. employed a backpropagation ANN to evaluate
the quality of resistance spot welding using scanning acoustic microscopy [17]; Junyan et al. designed
a MLP-ANN to detect subsurface defects in different materials using thermography [18]; Pérez-Benítez
et al. proposed a feature selection algorithm to optimize a probabilistic ANN that classifies magnetic
material samples using magnetic Barkhausen noise information [19]; Cao et al. employed a Radial Basis
Function ANN (RBF-ANN) to evaluate wire ropes with eddy current inspection [20]; Xu et al. proposed
a Kohonen ANN to predict the coating failure process cycles on steel plates using electrochemical
impedance spectroscopy data [21]; Nunes et al. employed ultrasound signals to classify Ni-based alloy
samples with a MLP-ANN [22]; and Wrzuszczak et al. combined the eddy current information with
ANNs to detect cracks on conducting layers and on ferrous tubes [12].

The main objective of this article is to analyze the suitability of RBF-ANNs to classify tempered
steel cams using multi-frequency impedance data acquired from eddy current NDT. To this end,
the performance of the proposed RBF-ANN is compared with other classical classifiers. To reach the
proposed objective, the following tasks were performed: (i) acquisition of multi-frequency eddy current
impedances from two DIN 100Cr6 steel cam sets with different cooling processes; (ii) application
of the ANalysis Of VAriance (ANOVA) test to analyze the suitability of the acquired impedances to
classify the steel cams; (iii) classification with RBF-ANN, Linear Discriminant Analysis (LDA), and
Euclidean distance classifiers (EDC); and (iv) comparison of the aforementioned classifiers considering
the precision and the area under the Receiver Operating Characteristic (ROC) curve.

2. Theoretical Background

Eddy currents, which are also called Foucault currents, are electric currents induced by a variable
magnetic field in a conductor. According to Faraday’s law, an eddy current flow is generated in a piece
of steel when a coil fed with AC current is approached, as Figure 1 shows [23–25].
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Figure 1. Eddy current flow generation approaching a ferrite-inductive coil probe to a steel sample.
The main parameters involved are the lift-off, the penetration depth (δ), the magnetic permeability (µ),
and the electrical conductivity (σ).

The magnitude and the phase of the induced eddy currents affect the loading of the coil and,
thus, its global impedance Zcoil. The impedance of the coil is also affected by the lift-off, which is the
separation between the coil and the steel sample. This impedance can be measured using an eddy
current instrumentation device [25,26]. The coil excitation frequency f permits the adjustment of the
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penetration depth δ, which is proportional to f−0.5, according to the skin effect [27,28]. The acquired
impedance of the coil Zcoil (x, σ, µ, f ) is mainly related to the electrical conductivity σ, to the magnetic
permeability µ, to the lift-off x, and to the applied and the residual stresses of the steel sample that
slightly influence on σ and µ (Figure 2) [2,28].

Metals 2017, 7, 385  3 of 12 

 

separation between the coil and the steel sample. This impedance can be measured using an eddy 
current instrumentation device [25,26]. The coil excitation frequency f permits the adjustment of the 
penetration depth δ, which is proportional to f−0.5, according to the skin effect [27,28]. The acquired 
impedance of the coil Zcoil (x, σ, μ, f) is mainly related to the electrical conductivity σ, to the magnetic 
permeability μ, to the lift-off x, and to the applied and the residual stresses of the steel sample that 
slightly influence on σ and μ (Figure 2) [2,28]. 

 

Figure 2. Normalized impedance plane to implement ferromagnetic samples sorting systems based 
on electrical conductivity σ2–σ1 and magnetic permeability μ2–μ1 variations. 

3. Materials 

The kit of eight DIN 100Cr6 steel cams for automobile engines shown in Figure 3 was employed 
to perform the NDT analysis presented in this article. These cams were heated up to 840–860 °C with 
an inductive method and cooled under different conditions, and then they were divided into two 
groups, Group 1 and Group 2. The cams belonging to Group 1 presented a hardness greater than 55 
Hardness Rockwell-C (HRC) because they had been subjected to a rapid oil cooling in their 
manufacturing process (30–40 °C/s). The predominant metallurgical structure of the cams belonging 
to Group 1 was the desired martensite and some bainite. The cams belonging to Group 2 presented a 
hardness lower than 45 HRC because they had been subjected to a cooling process (20–30 °C/s) 
slower than the process of Group 1. The predominant metallurgical structure of the cams belonging 
to Group 2 was perlite and some bainite. 

 
Figure 3. Image of the steel cams employed in the experiments: the four cams of the lower row 
(Group 1) had a predominant microstructure of martensite and a hardness greater than 55 HRC, 
while the four cams of the upper row (Group 2) had a predominant microstructure of perlite and a 
hardness lower than 45 HRC. 

4. Methods 

The methodology comprised five stages: impedance acquisition, data preprocessing, statistical 
analysis, classification, and ROC analysis, as Figure 4 shows. 

Figure 2. Normalized impedance plane to implement ferromagnetic samples sorting systems based on
electrical conductivity σ2–σ1 and magnetic permeability µ2–µ1 variations.

3. Materials

The kit of eight DIN 100Cr6 steel cams for automobile engines shown in Figure 3 was employed
to perform the NDT analysis presented in this article. These cams were heated up to 840–860 ◦C
with an inductive method and cooled under different conditions, and then they were divided into
two groups, Group 1 and Group 2. The cams belonging to Group 1 presented a hardness greater
than 55 Hardness Rockwell-C (HRC) because they had been subjected to a rapid oil cooling in their
manufacturing process (30–40 ◦C/s). The predominant metallurgical structure of the cams belonging
to Group 1 was the desired martensite and some bainite. The cams belonging to Group 2 presented
a hardness lower than 45 HRC because they had been subjected to a cooling process (20–30 ◦C/s)
slower than the process of Group 1. The predominant metallurgical structure of the cams belonging to
Group 2 was perlite and some bainite.
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Figure 3. Image of the steel cams employed in the experiments: the four cams of the lower row
(Group 1) had a predominant microstructure of martensite and a hardness greater than 55 HRC, while
the four cams of the upper row (Group 2) had a predominant microstructure of perlite and a hardness
lower than 45 HRC.

4. Methods

The methodology comprised five stages: impedance acquisition, data preprocessing, statistical
analysis, classification, and ROC analysis, as Figure 4 shows.
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Figure 4. Block diagram of the methodology employed in this article.

The impedance acquisition stage was performed in lab conditions for its subsequent analysis.
The acquired data were preprocessed in order to adapt them to the classifiers input requirements.
These preprocessed data were analyzed with the ANOVA statistical test to evaluate if there were
statically significant differences on the analyzed variables depending on the cooling conditions. After
that, each analyzed cam was classified considering different classifiers, evaluating the performance of
each classifier and performing a ROC analysis. A general purpose laptop (ASUSTeK Computer Inc.,
Taipei, Taiwan) with an Intel Core i3 M350 @ 2.27 GHz processor and 4 GB RAM was employed to
perform the processing tasks of all the stages of the methodology.

4.1. Impedance Acquisition Stage

The impedance acquisition stage was performed using one coil probe, one ISEND CompAnalyzer
device, and the abovementioned computer. The elements employed in the impedance acquisition
stage are shown in Figure 5.
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Figure 5. Layout of the elements employed in the impedance acquisition stage: the probe with an
active and compensation coil, which generates an eddy current flow in a steel sample; the ISEND
instrumentation device feed that measures the impedance Z(f,X,Y); and the computer stores and
processes the impedance values.

The probe was composed of one active-coil (a-c) with impedance Za-c and one compensation coil
(c-c) with impedance Zc-c. The absolute with compensation operation mode was chosen for the probe
in order to increase its dynamic range. The Wheatstone bridge represented in Figure 6 was employed
to interconnect the probe with the instrumentation device.
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The coils resistance (R) and inductance (L) values, and the resistance and inductance relative
variations between active and compensating coils due to the manufacturing process are presented
in Table 1. A reactance (XL) to resistance ratio greater than 1 warrantied operation in the 1–300 kHz
frequency band, and resistance and inductance variations lower than 5% due to the manufacturing
process, were considered acceptable.

Table 1. Resistance (R), inductance (L), reactance (XL), and impedance (Z) of active and compensating
coils, and R and L relative variations between active and compensating coils at frequencies (f ) 0.1 kHz,
0.12 kHz, 1 kHz, 10 kHz, and 100 kHz.

Active Coil

f (kHz) 0.1 0.12 1 10 100
L (mH) 2.1415 2.1415 2.1308 2.1311 2.5888
XL (Ω) 1.3455 1.6147 13.3882 133.9010 1626.5910
R (Ω) 12.9030 12.9020 12.9000 12.8980 12.8930
Z (Ω) 12.9730 13.0026 18.5918 134.5207 1626.6421

Compensating Coil

f (kHz) 0.1 0.12 1 10 100
L (mH) 2.1216 2.1187 2.1095 2.1071 2.5317
XL (Ω) 1.3330 1.5975 13.2544 132.3930 1590.7140
R (Ω) 12.4950 12.4980 12.5000 12.5010 12.5020
Z (Ω) 12.5659 12.5997 18.2189 132.9819 1590.7632

Active/Compensating R, L Coil Variation

R variation −3.1621% −3.1313% −3.1008% −3.0780% −3.0327%
L variation −0.9293% −1.0647% −0.9996% −1.1262% −2.2057%

The ISEND CompAnalyzer device was employed to feed the probe at the desired frequency f
and amplitude V, and to acquire the real and imaginary parts of the impedance (Re{Za-c} and Im{Za-c}
respectively) from the acquired signal V0–Vref (Figure 6).

Impedance data were acquired at room temperature (23 ◦C) by approaching the steel cams to the
coil probe (Figure 7), which was powered at one of the five different operating frequencies considered:
300 kHz, 100 kHz, 50 kHz, 20 kHz, and 10 kHz. The impedance was acquired with a lift-off lower
than 0.2 mm, acquiring five measurements for each steel cam. These data were divided into two
datasets: a training dataset, which contained the data of 50% of the cams, and the testing dataset,
which contained the data of the remaining 50% of the cams. From this point forward, we will refer
to these impedance components as 300R, 300X, 100R, 100X, 050R, 050X, 020R, 020X, 010R, and 010X,
where the number refers to the acquisition frequency in kHz and the letter indicates if it refers to the
resistance (R) or the reactance (X) of the impedance.
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4.2. Data Preprocessing Stage

Acquired impedance components were normalized to adapt them to the input required by the
implemented classifiers [29]. The normalization procedure adjusted the mean value and the standard
deviation of the data to zero and one, respectively, using the equation presented in (1):

Z′i = R′i + j·X′i where

{
R′i =

Ri−µR
σR

X′i =
Xi−µX
σX

(1)

where µR and σR are, respectively, the mean and the standard deviation of the real part of the
impedance values of the training dataset, and µX and σX are, respectively, the mean and the standard
deviation of the imaginary part of the impedance values of the training dataset.

4.3. Statistical Analysis Stage

The one-way ANOVA test is a statistical procedure to analyze two or more groups of data.
It performs statistical hypothesis testing considering that the means of the analyzed groups are the
same as the null hypothesis. As a result, the ANOVA test gives a p-value, which is the probability that
the analyzed data are drawn from populations with the same mean. In our work, a one-way ANOVA
test was performed to analyze the statistical significance of the differences between the preprocessed
impedance samples of the two classification groups considered. The p-value of each variable was
obtained and compared with a significance level of α = 0.01. According to the ANOVA test theory,
p-values lower than α denote significant differences between the analyzed groups, while p-values
greater than α denote non-significant differences [30].

4.4. Classification Stage

Twelve classifiers were implemented: one RBF-ANN, 10 LDA classifiers, and one EDC. The
RBF-ANN classifier proposed in this article was compared with the 10 LDA classifiers, and
with the EDC. LDA and EDC were chosen because they are, respectively, one-dimensional and
multidimensional classifiers typically employed in the literature [31–33]. As LDA are one-dimensional
classifiers, 10 LDA classifiers were considered to analyze the 10 variables considered by the RBF-ANN
and the EDC. All the implemented classifiers employed impedance data as inputs, so none of them
implemented a feature extraction stage before the classification stage.

4.4.1. RBF-ANN Classifier

An RBF-ANN with a single hidden layer was proposed to classify the steel cams. The input layer
was composed of 10 neurons, which got the real and imaginary values of the impedances acquired
at the five different frequencies under consideration. The number of hidden neurons was set to the
number of training samples, which was 20, and the number of output neurons was set to 1. Each input
sample was assigned to Group 1 or to Group 2 when the output was greater or lower than a threshold
value respectively. Figure 8 shows a schematic of the proposed RBF-ANN.

The training method of the RBF-ANN consisted of two steps: (1) setting the weights of the hidden
layer as the values of the training samples; and (2) adjusting the output layer weights and biases by
means of solving the linear expression that relates the output of the hidden layer and the target values
of the training samples [34–36].

4.4.2. LDA Classifiers

Ten LDA classifiers were proposed to classify the steel samples using independently each one of
the ten acquired and preprocessed impedance components. The training method of the LDA classifiers
consisted of the adjustment of the threshold, selecting the one that obtained the best classification
rate with the training samples [37]. Each classifier was named LDA-FFFC, where FFFC referred to
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the impedance component associated with the LDA classifier, using the nomenclature defined in
Section 4.1.
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Figure 8. Schematic of the Radial Basis Function Artificial Neural Network (RBF-ANN) classifier
proposed with 10 inputs, one hidden layer with 20 neurons, and one output. In this representation,
x represents the input vector, y the output vector, w the weights vector, and b the biases vector. The h
and o sub-indexes were used to refer to the hidden layer and the output layer respectively. The number
beside each arrow indicates the size of the matrix data on this point of the ANN.

4.4.3. Euclidean Distance Classifier

EDC is a multidimensional classifier that assigns a sample to the group whose multi-frequency
descriptive point, which is called centroid, is closer. The training method of the EDC consisted of
calculating the centroids of the two groups of samples, called cI and cII, as the average of the training
samples of each group.

The trained EDC computed the Euclidean distance from the sample point to each centroid,
evaluated the difference between the distances from the point to the two centroids ||x− cI|| − ||x− cII ||,
and assigned the sample to Group 1 or to Group 2 when the difference was lower or higher than the
threshold value respectively.

4.5. ROC Analysis Stage

The ROC analysis consisted in analyzing the performance of the classifiers described in the
previous subsection as a function of their thresholds [13,38]. Three performance parameters were
calculated in the ROC analysis: sensitivity, specificity, and precision. Sensitivity is the success rate
considering only samples of Group 2, which is known as true positive rate. Specificity is the success
rate considering only samples of Group 1, which is known as false positive rate. Precision is the success
rate considering samples of both groups. The main graphical result of the ROC analysis is the ROC
curve, which is a function that represents the sensitivity versus the specificity of the analyzed classifier
for different values of the threshold. The main numerical result of the ROC analysis is the Area under
the ROC curve (AROC). The optimum precision, which is the maximum precision that can be obtained
with the analyzed classifier, is another numerical result commonly employed to describe the classifier.

5. Results

The results of the ANOVA test and the performance comparison of the implemented classifiers
are presented in the next two subsections.

5.1. ANOVA Test Results

The ANOVA test was applied separately to each one of the 10 impedance components considered
in order to evaluate the capability of these 10 variables to distinguish the two groups of samples with
different heat treatment. The results obtained after applying the ANOVA test are shown in Table 2,
presenting the p-value for each impedance component.

Considering a significance level of α = 0.01, Table 2 shows that only impedance components 100R,
020X, and 010X had a p-value greater than α, while the other seven components had a p-value lower
than α. According to the ANOVA test theory, the aforementioned three impedance components did
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not have significant differences between the samples belonging to Groups 1 and 2, while the other
seven impedance components had significant differences.

Table 2. ANOVA p-value of each impedance component.

Impedance Component p-Value

300R 3.177 × 10−9

300X 1.645 × 10−7

100R 4.087 × 10−1

100X 1.095 × 10−8

050R 2.030 × 10−5

050X 3.427 × 10−5

020R 1.399 × 10−8

020X 5.064 × 10−2

010R 3.699 × 10−3

010X 9.146 × 10−1

5.2. Classifiers Performance Results

The twelve classifiers abovementioned were implemented and their performance was compared
considering the testing dataset. To this end, the optimum precision, the ROC, and the AROC of each
classifier were calculated in order to perform the comparison. The obtained results are shown in
Table 3 and Figure 9.

Table 3. Optimum precision and Area under the Receiver Operating Characteristic (AROC) curve
obtained for the Linear Discriminant Analysis (LDA), Euclidean distance classifiers (EDC), and
RBF-ANN classifiers obtained for the classification performed with the testing dataset.

Classifier Optimum Precision AROC

RBF-ANN 95% 0.98
LDA-300R 90% 0.93
LDA-300X 80% 0.86
LDA-100R 70% 0.64
LDA-100X 90% 0.93
LDA-050R 75% 0.82
LDA-050X 80% 0.79
LDA-020R 85% 0.91
LDA-020X 70% 0.67
LDA-010R 75% 0.74
LDA-010X 55% 0.49

EDC 90% 0.96

According to Table 3, the RBF-ANN proposed in this article showed the best classification
performance, with an optimum precision of 95% and an AROC of 0.98. The second-best classification
performance was achieved by the EDC, with an optimum precision of 90% and an AROC of 0.93.
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Figure 9. Schematic ROC curves for the LDA-300R (green), LDA-100X (green), LDA-020R (brown),
LDA-010X (pink), EDC (blue), and RBF-ANN (red) classifiers obtained for the cams classification
performed. The X-axis value (1-specificity) is the complementary of the specificity, and the Y-axis value
is the sensitivity, both of them expressed as a real number between 0 and 1.

6. Discussion

The results presented in the previous section show two main findings. The first is that the
proposed RBF-ANN can implement a method to classify tempered cams with high precision and high
AROC. This finding is supported by the results presented in Table 3 for the RBF-ANN classifier, which
show a precision of 95% in the steel samples classification. The second finding is that the RBF-ANN
had a better performance than the other classifiers implemented in this article. This is supported by
the results presented in Table 3, which show that the RBF-ANN obtained a precision and an AROC 5%
and 2% higher than the best precision and AROC obtained by the LDA classifiers and the EDC.

The frequency range of the impedances employed as input values for the classifiers was between
10 kHz and 300 kHz, which are the frequencies associated to a penetration depth range between 20 µm
and 102 µm according to the skin effect [27]. This penetration depth range inspects only the treated
layer, which is greater than 500 µm, and provides enough impedance variation to classify the samples.
The five considered frequencies, which where 10 kHz, 20 kHz, 50 kHz, 100 kHz, and 300 kHz, were
chosen to sample as uniformly as possible both the frequency range and the penetration depth range
in order to minimize common features of bainite between cams of Group 1 and Group 2 and remark
the different features of martensite or perlite. Authors consider that the chosen frequencies were
suitable for two reasons. On the one hand, the ANOVA test performed on the data used in this article
showed 70% of components had significant differences between the two groups considered. This
result suggests that the chosen frequency range is suitable to differentiate groups of samples with
different cooling ramps. Pulsed eddy current testing could also be tested instead of the presented
stationary testing [39], but the required transient response or magnitude spectrum analysis would have
increased the RBF-ANN complexity. On the other hand, the frequency ranges employed in this article
are in line with the work of other authors who chose similar frequency ranges in their research works.
For example, Konoplyuk [10] employed impedances at several kHz to estimate the perlite composition
in ductile cast irons, and Mercier et al. [11] and Habiby et al. [40] evaluated steel properties employing
data in the range of a few kHz.

There are three noteworthy observations when analyzing the performance of the classifiers.
The first observation is that the best classifiers considering the precision, are also the best classifiers
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considering the AROC. It indicates that the classification ranking considering the precision is going
to be the same ranking when considering the AROC. The second observation is the performance
improvement of the RBF-ANN and the EDC compared to the LDA classifiers. This improvement could
appear because the information necessary to perform the classification was not contained in a singular
impedance component. Using multiple variables to improve the performance of univariate classifiers is
common for both NDT field classifications [13], and general classification problems [35,36]. This is one
of the possible reasons why classifiers with multiple inputs are mostly employed in the literature [31].
The third observation is the relation between the p-values of the ANOVA test and the classification
results obtained by the LDA classifiers; the LDA classifier implemented for the impedance components
with the highest p-values obtained the worst classification results and vice versa.

ROC analysis shows the performance of the proposed classifiers when having the best precision
is not the main requirement to design the classifier. For example, some quality control applications
require an optimum sensitivity in order to not classify one bad sample as a good one. When analyzing
Figure 9, the specificity and precision of the classifiers with 100% sensitivity is, respectively, 90% and
95% for the RBF-ANN classifier, 40% and 80% for the best LDA classifier, and 70% and 85% for the
EDC. The higher specificity and precision of the proposed RBF-ANN classifier compared to the EDC
and LDA classifiers show the strength of the proposed classifier when different design conditions
are considered.

One limitation of the presented work is related to the conditions in which the experiments have
been performed. Data acquisition was done in an experimental laboratory with a controlled ambient
temperature and away from noise sources, while industrial data acquisition is usually performed with
variable ambient temperature and external noise sources. Nevertheless, the external noise influences
could be minimized with a filtering stage, and the temperature changes influence in the measurements
is expected to be reduced because of the self-compensating coil. Another limitation is that the proposed
method has been validated only for the analyzed steel cams considering only two different cooling
conditions. However, the theoretical basis of the proposed classification method suggests that a similar
method could be applied when other steel pieces or other cooling conditions are considered. Moreover,
using RBF-ANNs will facilitate solving the problems derived from these two limitations thanks to
its adaptivity capability, which eases its retraining process when minor changes in the conditions are
considered [35]. The third limitation of the presented work is that the implemented classifiers have not
yet been implemented in a quality control line to test its performance in real conditions. Nevertheless
Garcia-Martin et al. [41] found that a MLP-ANN without a feature extraction stage can classify steel
cams with an execution time small enough to not consider the processing time as a limiting factor.
This finding suggests that the processing time is not an important issue in the classification system
proposed in this article.

The results obtained in this work suggest some research lines that could be conducted in the future.
On the one hand, the proposed classification method could be improved considering more realistic
industrial conditions, such as variable air temperature, the presence of conducted or radiated electric
noise, or high speed classification requirements. On the other hand, the proposed methodology could
be applied considering other factors, such as other tempering cycles, other types of steel, or fusing the
considered eddy current data with pulsed eddy current testing [42] or another NDT techniques data to
improve the classification performance.

7. Conclusions

This study suggests two conclusions about employing an RBF-ANN to classify tempered DIN
100Cr6 cams using multi-frequency NDT eddy current impedance data. The first is that a classifier
based on an RBF-ANN can perform the classification with good precision and AROC, 95% and 0.98
respectively in our test. The second is that RBF-ANN-based classifiers achieve higher performance
than other classifiers, such as LDA and EDC, with at least a precision of 5% higher and an AROC of
2% higher in our test. Obtained results show that eddy current impedance data acquired at different
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frequencies can be used to distinguish between the two analyzed tempering conditions with good
precision, with RBF-ANNs being a good classification method to process this multi-frequency data.
Furthermore, the aforementioned conclusions suggest that the proposed method can be employed to
classify DIN 100Cr6 cams in a quality point of the production line.
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