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Abstract

This study is aimed at (i) estimating the angular leaf spot (ALS) disease severity in common

beans crops in Brazil, caused by the fungus Pseudocercospora griseola, employing leaf and

canopy spectral reflectance data, (ii) evaluating the informative spectral regions in the

detection, and (iii) comparing the estimation accuracy when the reflectance or the first deriv-

ative reflectance (FDR) is employed. Three data sets of useful spectral reflectance mea-

surements in the 440 to 850 nm range were employed; measurements were taken over the

leaves and canopy of bean crops with different levels of disease. A system based in Princi-

pal Component Analysis (PCA) and Artificial Neural Networks (ANN) was developed to esti-

mate the disease severity from leaf and canopy hyperspectral reflectance spectra. Levels of

disease to be taken as true reference were determined from the proportion of the total leaf

surface covered by necrotic lesions on RGB images. When estimating ALS disease severity

in bean crops by using hyperspectral reflectance spectrometry, this study suggests that (i)

successful estimations with coefficients of determination up to 0.87 can be achieved if the

spectra is acquired by the spectroradiometer in contact with the leaves, (ii) unsuccessful

estimations are obtained when the spectra are acquired by the spectroradiometer from one

or more meters above the crop, (iii) the red to near-infrared spectral region (630–850 nm)

offers the same precision in the estimation as the blue to near-infrared spectral region (440–

850), and (iv) neither significant improvements nor significant detriments are achieved when

the input data to the estimation processing system are the FDR spectra, instead of the

reflectance spectra.

1. Introduction

Phaseolus vulgaris, the common bean, is a legume crop consumed worldwide. In 2012, 24 mil-

lion tons of dry common beans and 21 million tons of green beans were produced, ranking as

the 11th and 78th most produced crops worldwide, respectively [1, 2]. Beans are an excellent
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source of protein, carbohydrates, dietary fiber, vitamins, minerals, and phytochemicals [3].

Consumption of beans has health benefits because it can reduce cholesterol levels [4], diabetes

[5], and the risk of prostate cancer [6] and mammary cancer [7]. Some studies suggest that

diets rich in legumes, such as beans, are sometimes associated with longevity [8].

Several bacterial, fungal, and viral diseases attack aerial and underground parts of common

beans [9–11]. Among fungal diseases, the angular leaf spot (ALS), caused by the fungus Pseu-
docercospora griseola, is responsible for important yield losses worldwide [12–14]. An early

detection of ALS disease in a crop allows for effective disease management.

When light strikes a leaf, part of the light is reflected towards the observer. The amount

energy reflected at each light frequency is named reflectance spectrum, sometimes abbreviated

by spectra or by reflectance. Reflectance depends on leaf surface properties and internal struc-

ture, as well as by the concentration and distribution of biochemical components. Leaf and

canopy reflectance can be used to diagnose plant status. In the visible spectrum, (VIS, between

400 and 700 nm) reflectance depends mainly on the presence of photosynthetic pigments such

as chlorophyll. In the near infrared domain (NIR, between 700 and 13000 nm), where there

are no strong absorption features, the magnitude of reflectance is governed by structural dis-

continuities encountered in the leaf. The shortwave infrared region (SWIR, between 1300 nm

and 3000 nm), presents variable reflectance values mainly linked to the absorption characteris-

tics of water and other compounds [15]. Diseased plants usually exhibit discrete lesions on

leaves, corresponding to necrotic or chlorotic regions, with greater reflectance values in the

visible range [16]. A sharp transition from low to high reflectance usually occurs in the wave-

lengths between the visible and the NIR regions (around 700 nm), and this transition usually

shifts to shorter wavelengths in diseased crops [17]. The first derivative reflectance allows to

easily compute the wavelength were this transition occurs. Characteristics extraction of the

reflectance spectrum, and classification or regression techniques, can be used to diagnose the

plant status.

Multispectral reflectance data, characterized by having spectral regions more than 40 nm

wide, usually measure energy in between 2 and 10 separated regions. Spectral Vegetation Indi-

ces (SVIs) can be computed from combinations of some region values from the multispectral

reflectance data. Employing multispectral reflectance data, and in some cases computing indi-

ces, to estimate disease in crops is common in the literature. For example, Dammer et al. [18]

computed the NDVI index using the red and the infra-red regions to estimate head blight on

wheat crops, Cui et al. [19] detected rust disease in soybean crops employing different vegeta-

tion indices, and Xiao and McPherson [20] determined the health of 215 tree species by means

of the NDVI index.

Hyperspectral reflectance data, characterized by spectral regions less than 10 nm wide, are

typically composed of 200 or more regions. It allows the in-depth examination of crop features,

this not being possible with the relative coarse bandwidths acquired by multispectral spec-

trometers. Using hyperspectral reflectance data for disease estimation in crops is common in

the scientific literature. For example, Zhang et al. [21] detected late blight disease in tomato

crops caused by the fungal pathogen Phytophthora infestans, Muhammed et al. [22] quantified

tan spot disease severity in wheat crops infected by the fungal pathogen Pyrenophora tritici-
repentis, Wu et al. [23] detected Botrytis cinerea fungus infestation in eggplant crops, Liu et al.
[24] classified in levels the severity of rice glume blight disease caused by the fungus Micro-
sphaeropsis glumarum, and the severity of rice false smut disease caused by the fungus Ustilagi-
noidea virens, performing both classifications in rice crops, Prabhakar et al. [25] estimated

yellow mosaic disease caused by Mungbean yellow mosaic virus in black bean, and Pietrzy-

kowski et al. [26] detected Mycosphaerella leaf disease caused by several fungus in Eucalyptus
globulus foliage, with an index computed from the reflectance at 550 nm and 678 nm.
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Hyperspectral reflectance spectra contain high correlated information in a large number of

wavelengths. Several methods have been employed to reduce the length of the reflectance vec-

tor using this correlation, such as the computation of SVIs [20, 27, 28], Principal Component

Analysis (PCA) [24, 29, 30], Principal Component Regression (PCR) [31], and Partial Least

Squares (PLS) regression [23, 28, 32]. Once that correlation is reduced, decision trees [33, 34],

Artificial Neural Networks (ANNs) [24, 35, 36], Support Vector Machines (SVMs) [37–39],

and clustering [33, 40, 41], among other techniques, are usually employed to estimate crop fea-

tures in remote sensing.

This study aims to (i) estimate the ALS disease severity in common beans crops from leaf

and canopy spectral reflectance data, (ii) evaluate the informative spectral regions in the detec-

tion of the disease, and (iii) compare the estimation accuracy when the reflectance data is

employed to the one obtained when the first derivative reflectance (FDR) data is employed

instead.

2. Material and methods

This section presents the study site where the experiments were performed, and the materials

and methods employed to acquire the data and to process these data to estimate the disease

severity.

2.1. Study site

Three experiments, named UFV1, UFV2, and FEVP3, were conducted in 2011. UFV1 and

UFV2 were performed in the Diogo Alves de Melo experimental area of the Universidade Fed-

eral de Viçosa, in Viçosa, MG, Brazil (20˚ 45’ S, 42˚ 52’ W, altitude 648 m), and they consisted

of 40 and 32 different plots, respectively. The FEVP3 site was in Vale do Piranga experimental

area in Oratorios, MG, Brazil (20˚ 24’ S, 42˚ 48’ W, altitude 450 m), and it consisted of 40 dif-

ferent plots.

The soil was prepared with a disc harrow. The crops were seeded on April 8, July 29, and

July 26 for UFV1, UFV2, and FEVP3, respectively. The variety of common beans employed

was Ouro Vermelho, which is susceptible to ALS. The seed density was 10 seeds per meter

along a 5.5-meter row, with five rows per plot and 0.5 meters between each row. Common

insecticides and 8-28-16 fertilizer were applied while the crop was growing. Weeds were man-

ually removed.

Bean straw from others nearby fields, affected by the ALS, was evenly spread in the plots

eight days after the sprouting of the crop. The study was developed as a completely random-

ized design involving four treatments with 10, 8, and 10 replications for UFV1, UFV2, and

FEVP3 experiments, respectively. The treatments considered four different doses of fungicide

in order to achieve different ALS severities. The AMISTAR1 fungicide, whose active ingredi-

ent is azoxystrobin (23.1% w/w), was applied in doses of 0, 50, 100, and 150 g/ha of commercial

product on each part of the plot. The fungicide was applied three times during the crop devel-

opment using a back sprayer, which was previously calibrated to each fungicide dose.

2.2. Data acquisition

Three types of data were acquired: leaf reflectance spectra, canopy reflectance spectra, and leaf

RGB images.

Leaf reflectance spectral data in the 325–1075 nm spectral region with a resolution of 1 nm

was acquired employing an ASD Field Spec HandHeld-2 spectroradiometer, manufactured by

the Analytical Spectral Devices company, from Boulder, Colorado, USA. A leaf clip accessory,

also from the same company, was connected to the spectroradiometer (Fig 1a). Calibrations
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were done using a spectralon white panel, following the guidelines of the spectroradiometer

user manual. All the data was collected between 10:00 and 14:00 Brasilia Time (GMT-3). The

acquisition software employed was RS3, which was provided by the manufacturer of the spec-

troradiometer. The data was exported by the ViewSpectro Pro software, which was also pro-

vided by the manufacturer of the spectroradiometer. Each leaf reflectance spectrum of the

crop was considered as the mean of the reflectance spectra obtained with 27 leaves taken from

nine different plants randomly chosen for each plot. From each plant, it was taken a leaf of the

upper third, one of the middle third, and other of the lower third, measuring always the central

part of each leaf. The reflectance readings of these leaves were made immediately after they

were taken. Canopy reflectance spectral data was acquired by employing: the same spectroradi-

ometer without the leaf clip accessory, a four-wheel metallic platform, and a four-meter-long

optical fiber cable. This made it possible to focus the spectroradiometer on the canopy, from

three meters above the ground (Fig 1b).

Leaf RGB images were acquired employing an ordinary digital camera, an 0.8×0.8×0.8 m

wooden box with an opening at the top for camera positioning, and six fluorescent lamps illu-

minating the inside of the box. The 27 leaves of each plot collected to spectral readings were

placed at the bottom of the box, and photos were taken from the opening at the top (Fig 1c).

The effective resolution was 3.78 pixels/mm.

Table 1 presents the data collection times for canopy reflectance, leaf reflectance and leaf

images on different crop growth stage, characterized as days after plant emergence. All these

data is supplied as a Repository File, which is explained in S1 Text.

Fig 1. Representative images of the data acquisition. (a) spectroradiometer and leaf clip accessory employed to acquire leaf reflectance

spectrum, (b) spectroradiometer and platform employed to acquire canopy reflectance, and (c) RGB image of several leaves analyzed.

https://doi.org/10.1371/journal.pone.0196072.g001

Table 1. Data collection times for leaf reflectance (LR), canopy reflectance (CR) and leaf image (LI) on different days after plant emergence (DAE) for each

experiment.

UFV1 UFV2 FEVP3

DAE LR CR LI DAE LR CR LI DAE LR CR LI

33 x x 29 x x 21 x x

40 x x 37 x x 33 x x

50 x x 42 x x 41 x x

65 x x 50 x x 48 x x x

76 x x x 58 x x 55 x x x

84 x x x 64 x x x 63 x x

72 x x 69 x x

79 x x 77 x x

https://doi.org/10.1371/journal.pone.0196072.t001
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2.3. Data analysis

Acquired data was analyzed before developing the model in order to expose their characteris-

tics and to see the differences between the three experiments performed. To this end, three dif-

ferent analysis were performed: (i) the disease severity evolution over time, (ii) the mean

reflectance versus the wavelengths considered, and (iii) the correlation between the disease

severity evolution and the reflectance data. The first analysis observed and justified the varia-

tions of the disease severity during the duration of the experiment for the experiments consid-

ered. The second analysis studied the reflectance and the FDR signals extracted from leaf

reflectance spectra and the canopy reflectance spectra. Finally, the third analysis calculated the

Pearson correlation coefficient and the determination coefficient between the disease severity

severity and the reflectance or FDR data for each wavelength acquired.

2.4. Data processing overview

Fig 2 shows an overview of the block diagram of the processing methods carried out in this

study. It presents an RGB image processing method and a reflectance spectra processing method.

The RGB image processing method estimates the disease severity by computing the propor-

tion of the total leaf surface covered with necrotic lesions in RGB images of crop leaves. The

values obtained were used as a ground truth reference to check the accuracy of the reflectance
spectra processing method. Although the chlorotic disease is also part of ALS infection, the leaf

area with chlorotic disease was not considered into the disease level calculation because leaf

chloroses can be associated to other diseases such as plant nutrition problems. For this reason,

we considered the necrotic area ratio as the ground truth reference in our study, which is

going to be referred henceforth as reference necrotic disease severity.

The reflectance spectra processing method estimates the disease severity of the crop as a func-

tion of the leaf or canopy spectrum data. This method includes the computation of the FDR

spectrum, the conversion to another coordinate space by means of the PCA statistical proce-

dure, the selection of the most relevant components in the new coordinate space, and the

regression process implemented by an ANN to estimate the reference necrotic disease severity

values.

The RGB image processing and the reflectance spectra processing methods include supervised

learning techniques. Blocks of both methods were implemented in MATLAB1.

2.5. RGB image processing method

Disease severity values of the crop obtained by the Disease severity computing block were taken

as the ground truth reference necrotic disease severity. The reference necrotic disease severity

was computed from the RGB images of leaves as the proportion of the total leaf surface covered

with necrotic lesions [27]. The Disease severity computing block obtained the reference necrotic

disease severity values of each experiment following the next three steps:

• Step 1: A representative leaf RGB image, which contained parts with disease and parts with-

out disease, was chosen. Selected from this image were (i) 50 pixels from asymptomatic

green areas, (ii) 50 pixels from light brown areas with chlorosis, (iii) 50 pixels from dark

brown areas with necrosis, and (iv) 50 pixels from the white background.

• Step 2: Pixels of all the RGB images were associated with the asymptomatic class, with the

chlorosis class, with the necrosis class, or with the background class, employing a Quadratic

Discriminant Analysis classifier [42]. This classifier was trained employing the observations

corresponding to each one of 50-pixel groups previously selected to adjust its parameters. It
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assigned an observation x to the class k for which

dkðxÞ ¼ �
1

2
logj
X

k
j �

1

2
ðx � mkÞ

0
X� 1

k
ðx � mkÞ þ logðpkÞ ð1Þ

was the largest, μk being the average of the training observations for the kth class, πk the pro-

portion of the representative image considered in Step 1 that belongs to the kth class, and Sk

the covariance matrix for the kth class.

• Step 3: For each RGB image collected in the experiment (Fig 1c), the reference necrotic dis-

ease severity was computed as the number of pixels of the areas with necrosis, divided by the

sum of pixels of asymptomatic areas, areas with necrosis, and areas with chlorosis.

2.6. Reflectance spectra processing method

The spectra processing carried out in this study was performed by the Preprocessing, Deriva-
tive, PCA, Components selection and ANN-based regression blocks, according to the block dia-

gram shown in Fig 2.

2.6.1 Preprocessing block. The Preprocessing block performed three actions in each spec-

trum captured by the spectroradiometer: it applied a Kdecimate moving average filter, down-

sampled the spectrum in a Kdecimate to 1 rate, and removed data outside the interest spectral

regions. In the research work performed in this work, a decimate rate Kdecimate = 5 and the

interest regions from blue to NIR (440–850 nm) and from red to NIR (630–850 nm) were con-

sidered. It made that the reflectance preprocessed data was composed by 83 and 45 data points

for the data from blue to NIR and the data from red to NIR respectively.

2.6.2 Derivative block. The Derivative block computed the derivative spectrum from the

reflectance spectrum. The derivative value at each wavelength was computed as

ds
dl
ji ¼

sðliþ1Þ � sðli� 1Þ

2 � Dl
ð2Þ

where s represents the reflectance spectrum, λ the wavelength, Δλ the wavelength resolution

(Δλ = λi+1 − λi), and i the wavelength index of both the spectrum and the derivative vectors.

2.6.3 PCA block. The PCA block applied a PCA to both the reflectance and the FDR data.

PCA is a technique that transforms the input reflectance data to another multidimensional

orthogonal coordinate space. PCA defines the first principal component as the one with the

highest possible variance, and the rest of the components as the ones with the highest possible

variance that are orthogonal to all the previous components. The input signals of the PCA
block were normalized to calculate the PCA of a set of variables with zero mean and unit

variance.

Fig 2. Overview of the processing method performed in this study.

https://doi.org/10.1371/journal.pone.0196072.g002
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2.6.4 Components selection block. The Components selection block selected the compo-

nents of the PCA performed in the PCA block that contained most of the variance, and

removed the rest of the components because they contained only a small percentage of the var-

iance of the original data. The number of components selected in this work, which is going to

be referred to as Ncomp, was varied in order to perform a comparison and choose the optimal

option.

2.6.5 ANN-based regression block. The ANN-based regression block implements a back-

propagation MultiLayer Perceptron (MLP) ANN with a single hidden layer. This ANN has

Ncomp+1 inputs, which are the Ncomp components selected by the previous block and the num-

ber of Days After Planting (DAP). DAP is the number of days elapsed between the day when

the beans were planted and the day when the data was acquired. The hidden layer of the ANN

has a variable number of neurons, which is going to be referred to as Nhidden, with a logsig acti-

vation function. In addition, the MLP ANN has one output, which is the estimated disease

severity, with a linear activation function. A different ANN was designed for each one of the

evaluation scenarios employed in this article to assess the proposed method, using samples

from 30% of the plots for testing the ANN and the remaining 70% of the plots for training and

validation: 75% of these latter plots were randomly selected to train the ANN and the other

25% to validate it. Moreover, for each evaluation scenario considered in this article different

ANNs with the number of hidden neurons between 2 and 25 were evaluated, with 100 itera-

tions for each number of hidden neurons. The ANN tested on each scenario was the one with

the lowest estimation error with the training and validation samples.

3. Results

An analysis of the data acquired from the study site and an evaluation of the proposed method-

ology is presented in this section.

3.1. Data analysis results

The crop in the experiments grew as expected, being the average productivities 1621, 1725,

and 1261 kg/ha for UFV1, UFV2, and FEVP3, respectively. The disease appeared at the flower-

ing stage, and the highest severity was found at the pod maturation stage.

Fig 3 shows the mean reference necrotic disease severity values for each experiment. The

reference necrotic disease severity was estimated from the area of necrosis found in the images

of the leaves. As expected, the reference necrotic disease severity generally increased with time,

showing some slight decreases between 50 and 80 DAP due to the controlled application of

fungicides and the emergence of new leaves. Moreover, the mean values of the reference

necrotic disease severity for the different plots of each experiment was 11.79, 7.50, and 9.79

and the standard deviation was 5.73, 3.64, and 3.71 for the experiments UFV1, UFV2, and

FEVP3, respectively. It indicates that both the mean value and the variability of the reference

necrotic disease severity among the plots of the experiment UFV1 was higher than the variabil-

ity of the other two experiments.

Fig 4 shows, for the leaf and canopy data acquired, the mean reflectance spectra, the mean

FDR spectra, and the variance of the raw reflectance spectra in the 450–850 nm waveband.

These mean reflectance spectra are in agreement with the ones obtained for bean crops by

Blackburn [43]. Fig 4b and 4d show that, in the UFV2 experiment, the canopy reflectance and

FDR values for wavelengths greater than 700 nm were slightly lower in comparison to the two

other experiments. This resulted from the underdevelopment of the crop, which was caused by

a weed infestation.
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Fig 5 presents the correlation between reference necrotic disease severity measurements

and the reflectance spectra or the FDR spectra. These graphs represent, for each wavelength,

the correlation between the reference necrotic disease severity and either the reflectance or the

FDR spectra value at this wavelength, considering the different plots analyzed in each experi-

ment and the data acquired at different stages of the plant lifecycle for each plot. It is interest-

ing to note the differences between the experiment UFV1 and the other two experiments.

Analyzing the data, it may be due to the variability of the reference necrotic disease severity

data for this experiment, which causes also that the variance of the leaf and the canopy reflec-

tance for this experiment in the red-NIR spectral region, which is the spectral band where the

effects of the disease appears according to the literature [15–17], is higher than the variance of

the other two experiments.

3.2. Methodology evaluation results

This section presents the results of the tests performed in the different scenarios employed

to evaluate the proposed methodology. The first set of evaluation scenarios were employed

to analyze the Ncomp parameter, i.e., the number of components of the PCA that should be

considered in the proposed methodology. To do so, the percentage of information con-

tained in the first components of the PCA was calculated, obtaining the results presented in

Fig 6.

The second set of evaluation scenarios were employed to assess the performance of the pro-

posed methodology for the different conditions considered in this article: using leaf reflectance

spectral data or canopy reflectance spectral data, using data acquired from the reflectance or

the FDR, and using the information from the blue spectral region to the NIR region or from

the red region to the NIR region, which contain the wavelengths from 440 to 850 nm and from

630 to 850 nm, respectively. Moreover, these scenarios considered the following values for the

Ncomp parameter: 3, 5, 6, 8, 10, 12, and 15. Performance of the methodology was evaluated con-

sidering the Root Mean Square Error (RMSE) and the determination coefficient, which was

obtained as the squared value of the Pearson correlation coefficient. The results obtained in

this experiment are presented in Tables 2 and 3.

Fig 3. Evolution of the mean reference necrotic disease severity for each one of the three experiments conducted.

The reference necrotic disease severity was estimated as the proportion of the total leaf surface covered by necrotic

lesions. The decrease of necrotic area between 50 and 80 DAP was caused by the controlled applications of fungicide

and the emergence of new leaves.

https://doi.org/10.1371/journal.pone.0196072.g003
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4. Discussion

The different evaluation scenarios assessed in this study made possible to analyze the influence

of different parameters within the proposed methodology on estimating the ALS severity in

common bean crops. The parameters analyzed were (i) the way the reflectance data is acquired

(leaf or canopy), (ii) the variable considered in the analysis (reflectance or FDR data), (iii) the

wavelength spectral region that is more relevant for the analysis (from blue to NIR or from red

to NIR), and (iv) the number of inputs for the ANN-based regression block, which is related to

Ncomp, the number of components considered as relevant information.

Fig 4. Mean reflectance spectra of (a) the leaf and (b) the canopy. Mean FDR spectra of (c) the leaf and (d) the canopy. Variance of (e) the leaf

and (f) the canopy reflectance spectra.

https://doi.org/10.1371/journal.pone.0196072.g004
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The first observation about the results obtained is that the reflectance measured from the

canopy does not achieve results accurate enough to consider it as a possible measurement to

estimate the reference necrotic disease severity. It can be calculated from the information of

Table 3 that the mean determination coefficient values for all the experiments is 0.71 for the

evaluation scenarios with data measured from the leaf, and 0.28 for the evaluation scenarios

with data measured from the canopy. Although the leaf area index was not measured during

the experiment, the variation on this index during the plant development could explain the

lower determination coefficients of canopy measurements than those of leaf measurements.

Thus, the variance within the canopy measurements may be mostly related to the growth of

the plants. Nevertheless, it is also important to note that the proposed method obtained signifi-

cant correlations when employed canopy reflectance data, which means that it is possible to

detect spectral differences between asymptomatic and infected plants. This was possible

because the proposed ANN was trained with reflectance data acquired at different times along

the plant development, so it was able to estimate the disease severity index despite of the differ-

ences in the leaf area index. For this reason, authors consider that considering the leaf area

index or analyzing the differences between the canopy reflectance of the plant and the canopy

reflectance of the soil should be considered in further experiments to improve the obtained

results.

The second observation is that there are not significant differences between the results of

the methods which employed the reflectance signal and those which employed the FDR signal.

From the data shown on Tables 2 and 3, it can be seen that neither the reflectance nor the FDR

Fig 5. In 440–850 nm, correlation between the reference necrotic disease severity and (a) the leaf reflectance, (b) the canopy reflectance, (c)

the leaf FDR, and (d) the canopy FDR. Each graph represents, for each wavelength, the correlation between the reference necrotic disease

severity and either the reflectance or the FDR spectra value at this wavelength, considering the different plots and the different acquisition times.

https://doi.org/10.1371/journal.pone.0196072.g005
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leads to more accurate results compared to the other. Analyzing the mean determination coef-

ficient values, scenarios considering reflectance data obtained a mean determination coeffi-

cient of 0.49 and scenarios considering FDR data obtained a mean determination coefficient

of 0.50, Analyzing these two groups of data with the two-sample Student’s T-test it can be said

that there are not significant differences between the mean values of these two groups with a

p-value of 0.78. There are studies in the literature in which the use of the FDR presents advan-

tages [29, 44, 45]. However, other studies concluded that the use of the FDR presents advan-

tages only in specific situations [46, 47], and there are also a few studies in the literature in

which the use of the FDR does not present advantages at all [48]. Our study shows neither

advantages nor disadvantages by using the reflectance data and the FDR data, which concurs

with the literature.

The third observation is that the methods that employed the information of the wavelength

spectral region between blue and NIR obtained similar results to the methods that employed

the information of the wavelength region between red and NIR. This observation is based on

the information presented in Table 3, where it can be calculated that the mean determination

coefficients are 0.51 and 0.49 for the scenarios that considered the wavelength region from

blue to NIR and from red to NIR, respectively. It can be explained because the spectral behav-

ior of the bean plants in the visible spectral region (400–700 nm) depends on the content of

plant pigments. Chlorophyll, which is a pigment considered as a very important agronomic

parameter to evaluate the growth and health of the plant presented two absorption peaks in

Fig 6. Percentage of information contained in the first components of the PCA of (a) the reflectance data between the blue and the NIR

spectral regions (B2NIR), (b) the FDR data between the blue and the NIR regions (dB2NIR), (c) the reflectance data between the red and

the NIR regions (R2NIR), and (d) the FDR data between the red and the NIR regions (dR2NIR). B2NIR and dB2NIR signals had 83 data

points and R2NIR and dR2NIR signals had 45 data points.

https://doi.org/10.1371/journal.pone.0196072.g006
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the blue and the red regions while others pigments present absorption peak just in the blue

region [49]. Thus, several authors of the literature considered the red spectral region as the

most important region because we could isolate the chlorophyll content estimation with this

region. The presented results show that there is not any improvement when considering the

blue and green spectral regions as input information, which agrees with the theory that consid-

ers the red and the NIR regions as the most important to evaluate the plant growing process.

The fourth observation is that most of the variance of the reflectance and FDR signals con-

sidered can be comprised with the first components of the PCA, as it can be seen in Fig 6. This

observation suggests that most of the last components of the PCA, which are the ones with the

least variance, could be discarded in order to minimize the complexity of the proposed

method. Moreover, the results presented in Tables 2 and 3 support this observation because

there is not a dependence between Ncomp and the RMSE or the determination coefficient: for

values of Ncomp greater than 10 the results obtained do not improve significantly.

Plant disease severity estimation methods can be classified into three types [50]. Type I:

visual rating methods, done by raters with the aid of scales or keys or by disease measurement

devices. These methods require trained raters that are expensive and suffer the subjectivity of

raters, which can be prone to illusions [51]. Type II: image photography and image analysis

methods performed in the visible spectrum. These methods employ only the red, green and

Table 2. RMSE for the evaluation scenarios proposed to assess the methodology, where Ncomp refers to the number of significant components chosen from the Prin-

cipal Component Analysis (PCA); E1, E2, and E3 refer to the experiments UFV1, UFV2, and FEVP3 respectively; L and C refer to the leaf and the canopy spectra

respectively; B-NIR and dB-NIR refer respectively to the reflectance and the FDR data between the blue and the NIR spectral regions; and R-NIR and dR-NIR refer

respectively to the reflectance and the FDR data between the red and the NIR regions. The wavelength ranges considered in these scenarios were from 440 to 850 nm

for the B-NIR and dB-NIR data, and from 630 to 850 nm for the R-NIR and dR-NIR data. The minimum and maximum RMSE values of each column were highlighted

with bold and bold-and-italic format respectively.

Ncomp 3 5 6 8 10 12 15

E1 L B-NIR 4.49 4.94 4.98 4.75 4.29 4.61 4.23

dB-NIR 4.46 4.21 4.30 4.05 4.20 4.17 4.47

R-NIR 4.74 4.65 4.13 4.83 4.22 4.15 4.81

dR-NIR 4.04 4.20 4.29 4.34 4.13 4.20 4.57

C B-NIR 7.01 6.86 6.69 6.74 6.88 6.93 7.05

dB-NIR 6.87 6.93 6.56 6.94 6.85 6.84 6.87

R-NIR 6.81 7.03 6.72 6.80 6.73 6.97 7.37
dR-NIR 7.11 7.06 6.92 7.05 6.87 6.93 7.01

E2 L B-NIR 3.88 3.70 3.16 3.52 3.64 3.65 3.48

dB-NIR 3.08 3.54 3.57 3.44 3.53 3.48 3.81

R-NIR 4.36 3.60 3.72 3.79 4.01 4.50 4.10

dR-NIR 3.05 3.36 3.64 3.64 3.51 3.82 3.76

C B-NIR 2.73 2.46 3.08 2.40 2.82 2.89 2.71

dB-NIR 2.63 2.65 2.68 2.73 2.76 2.47 2.95

R-NIR 2.43 2.71 2.69 2.58 2.69 2.59 2.84

dR-NIR 2.76 2.60 2.63 2.67 2.97 2.64 2.79

E3 L B-NIR 3.72 3.75 3.79 3.67 3.39 4.09 3.35

dB-NIR 4.19 3.61 3.56 3.65 3.89 4.00 3.34

R-NIR 4.09 3.82 3.77 4.09 3.85 3.98 3.73

dR-NIR 3.61 3.68 3.85 3.63 3.92 3.96 3.21

C B-NIR 2.43 2.42 2.43 2.32 2.44 2.21 2.43

dB-NIR 2.43 2.45 2.37 2.42 2.16 2.42 2.37

R-NIR 2.43 2.39 2.41 2.47 2.43 2.25 2.45

dR-NIR 2.48 2.47 2.41 2.27 2.28 2.51 2.31

https://doi.org/10.1371/journal.pone.0196072.t002
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blue spectral regions of the visible spectra [52]. Type III: hyperspectral imaging methods,

which employ images composed by many spectral regions, not just the red, green and blue

regions of the visible spectra, and then they have more potential to better estimate plant disease

severities [53]. The method of this study belongs to Type III methods.

The results obtained suggest that a method which uses the leaf reflectance for a wavelength

region between the red and the NIR wavelengths (630–850 nm) could be employed to estimate

ALS severity of common beans crops. Results presented in Tables 2 and 3 suggest this asser-

tion, because the RMSE and the determination coefficient obtained for the methods with the

best performance improve the results obtained by other authors of the literature, such as Gnyp

et al [48]. Nevertheless, these results has been obtained for regions of Minas Gerais (Brazil), so

extrapolations of the proposed method to other agronomic regions should be validated first.

As the reflectance and the FDR obtained similar results, the reflectance was chosen for two rea-

sons: the first is that it requires less processing, as FDR is obtained from the reflectance signal,

and the second is that the reflectance signal can include more reflectance variance than the

FDR in the first components of the PCA, as can be seen in Fig 6. Moreover, using the wave-

length spectral region between red and NIR (630–850 nm), instead of the region between blue

and NIR (440–850 nm), requires a simpler reflectance sensor, which can reduce its price, and

Table 3. Determination coefficient for the evaluation scenarios proposed to assess the methodology, where Ncomp refers to the number of significant components

chosen from the Principal Component Analysis (PCA); E1, E2, and E3 refer to the experiments UFV1, UFV2, and FEVP3 respectively; L and C refer to the leaf and

the canopy spectra respectively; B-NIR and dB-NIR refer respectively to the reflectance and the FDR data between the blue and the NIR spectral regions; and

R-NIR and dR-NIR refer respectively to the reflectance and the FDR data between the red and the NIR regions. The wavelength ranges considered in these scenarios

were from 440 to 850 nm for the B-NIR and dB-NIR data, and from 630 to 850 nm for the R-NIR and dR-NIR data. The maximum and minimum determination coeffi-

cient values of each column were highlighted with bold and bold-and-italic format respectively.

Ncomp 3 5 6 8 10 12 15

E1 L B-NIR 0.62 0.58 0.54 0.58 0.65 0.62 0.67

dB-NIR 0.64 0.66 0.65 0.69 0.68 0.67 0.68

R-NIR 0.58 0.61 0.69 0.60 0.67 0.68 0.58

dR-NIR 0.69 0.68 0.66 0.65 0.68 0.67 0.62

C B-NIR 0.56 0.55 0.55 0.54 0.54 0.54 0.55

dB-NIR 0.54 0.54 0.59 0.58 0.57 0.56 0.55

R-NIR 0.56 0.55 0.56 0.54 0.55 0.55 0.49

dR-NIR 0.53 0.52 0.55 0.52 0.57 0.55 0.53

E2 L B-NIR 0.81 0.81 0.86 0.83 0.81 0.83 0.83

dB-NIR 0.87 0.85 0.82 0.84 0.82 0.83 0.79

R-NIR 0.71 0.85 0.81 0.79 0.80 0.76 0.78

dR-NIR 0.86 0.85 0.84 0.82 0.83 0.82 0.81

C B-NIR 0.15 0.24 0.11 0.28 0.17 0.26 0.19

dB-NIR 0.18 0.09 0.16 0.09 0.33 0.21 0.29

R-NIR 0.22 0.14 0.13 0.18 0.17 0.24 0.25

dR-NIR 0.12 0.15 0.18 0.16 0.10 0.13 0.13

E3 L B-NIR 0.69 0.70 0.68 0.67 0.72 0.66 0.75

dB-NIR 0.65 0.71 0.71 0.72 0.65 0.62 0.73

R-NIR 0.64 0.68 0.67 0.64 0.65 0.63 0.70

dR-NIR 0.70 0.69 0.70 0.71 0.64 0.67 0.77

C B-NIR 0.13 0.10 0.09 0.13 0.08 0.28 0.12

dB-NIR 0.09 0.07 0.14 0.15 0.27 0.11 0.10
R-NIR 0.08 0.08 0.12 0.08 0.08 0.19 0.14

dR-NIR 0.05 0.06 0.11 0.22 0.17 0.08 0.15

https://doi.org/10.1371/journal.pone.0196072.t003
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allow us to work with a smaller region (220 nm vs 410 nm), which reduces the required

computational load.

The ground truth used in our work was based on RGB analysis (visible spectral region),

which is mainly influenced by the chlorophyll degradation. Thus, someone could think that a

sensor using just the visible bands could be efficient to detect ALS disease. However, a com-

mercial sensor should keep the NIR spectral band in order to compensate the physical differ-

ences among the leaves since the leaf spectral signatures on NIR region are mainly influenced

by the physical characteristics of the leaf.

5. Conclusions

In the estimation of ALS disease severity in bean crops by hyperspectral reflectance spectrome-

try, this study suggests that: (i) successful estimations with coefficients of determination up to

0.87 can be achieved if the spectra are acquired with the spectroradiometer in contact with the

leaves; (ii) unsuccessful estimations are obtained when the spectra are acquired by the spectro-

radiometer from farther than one meter above the crop; (iii) the red to NIR spectral region

(630–850 nm) offers the same estimation precision as the blue to NIR region (440–850 nm);

and (iv) neither significant improvements, nor significant detriments, are achieved when the

input data to the estimation processing system is obtained from the FDR spectra, instead of

the reflectance spectra.
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18. Dammer K-H, Möller B, Rodemann B, Heppner D. Detection of head blight (Fusarium ssp.) in winter

wheat by color and multispectral image analyses. Crop Prot. 2011; 30(4): 420–8. http://dx.doi.org/10.

1016/j.cropro.2010.12.015.

19. Cui D, Zhang Q, Li M, Zhao Y, Hartman G. Detection of soybean rust using a multispectral image sen-

sor. Sens & Instrumen Food Qual. 2009; 3(1): 49–56. https://doi.org/10.1007/s11694-009-9070-8

20. Xiao Q, McPherson EG. Tree health mapping with multispectral remote sensing data at UC Davis, Cali-

fornia. Urban Ecosyst. 2005; 8(3–4): 349–61. https://doi.org/10.1007/s11252-005-4867-7

21. Zhang M, Qin Z, Liu X, Ustin SL. Detection of stress in tomatoes induced by late blight disease in Cali-

fornia, USA, using hyperspectral remote sensing. Int J Appl Earth Obs Geoinf. 2003; 4(4): 295–310.

http://dx.doi.org/10.1016/S0303-2434(03)00008-4.

22. Hamid Muhammed H, Larsolle A. Feature Vector Based Analysis of Hyperspectral Crop Reflectance

Data for Discrimination and Quantification of Fungal Disease Severity in Wheat. Biosyst Eng. 2003; 86

(2): 125–34. http://dx.doi.org/10.1016/S1537-5110(03)00090-4.

23. Wu D F L.; Zhang C.; He Y. Early Detection of Botrytis cinerea on Eggplant Leaves Based on Visible

and Near-Infrared Spectroscopy. Trans ASABE. 2008; 51(3): 1133–9.

24. Liu Z-Y, Wu H-F, Huang J-F. Application of neural networks to discriminate fungal infection levels in rice

panicles using hyperspectral reflectance and principal components analysis. Comput Electron Agric.

2010; 72(2): 99–106. http://dx.doi.org/10.1016/j.compag.2010.03.003.

25. Prabhakar M, Prasad YG, Desai S, Thirupathi M, Gopika K, Rao GR, et al. Hyperspectral remote sens-

ing of yellow mosaic severity and associated pigment losses in Vigna mungo using multinomial logistic

regression models. Crop Prot. 2013; 45(0): 132–40. http://dx.doi.org/10.1016/j.cropro.2012.12.003.

Reflectance spectrometry applied to the estimation of disease severity of common bean crops

PLOS ONE | https://doi.org/10.1371/journal.pone.0196072 April 26, 2018 16 / 18

https://doi.org/10.1023/A:1024146710611
http://dx.doi.org/10.1016/j.tifs.2003.07.002
http://dx.doi.org/10.1016/j.numecd.2009.08.012
https://doi.org/10.3945/ajcn.113.071472
http://www.ncbi.nlm.nih.gov/pubmed/24871476
https://doi.org/10.3945/jn.113.189670
http://www.ncbi.nlm.nih.gov/pubmed/24553693
https://doi.org/10.1093/carcin/bgr247
http://www.ncbi.nlm.nih.gov/pubmed/22072617
http://www.ncbi.nlm.nih.gov/pubmed/15228991
https://doi.org/10.2135/cropsci2009.03.0163
https://doi.org/10.1094/PHYTO.2001.91.11.1045
https://doi.org/10.1094/PHYTO.2001.91.11.1045
http://www.ncbi.nlm.nih.gov/pubmed/18943439
https://doi.org/10.1016/S1360-1385(98)01213-8
https://doi.org/10.1007/s13337-013-0161-0
https://doi.org/10.1007/s13337-013-0161-0
http://www.ncbi.nlm.nih.gov/pubmed/24426282
http://dx.doi.org/10.1016/j.cropro.2010.12.015
http://dx.doi.org/10.1016/j.cropro.2010.12.015
https://doi.org/10.1007/s11694-009-9070-8
https://doi.org/10.1007/s11252-005-4867-7
http://dx.doi.org/10.1016/S0303-2434(03)00008-4
http://dx.doi.org/10.1016/S1537-5110(03)00090-4
http://dx.doi.org/10.1016/j.compag.2010.03.003
http://dx.doi.org/10.1016/j.cropro.2012.12.003
https://doi.org/10.1371/journal.pone.0196072


26. Pietrzykowski E, Stone C, Pinkard E, Mohammed C. Effects of Mycosphaerella leaf disease on the

spectral reflectance properties of juvenile Eucalyptus globulus foliage. Forest Pathol. 2006; 36(5): 334–

48. https://doi.org/10.1111/j.1439-0329.2006.00459.x

27. Ashourloo D, Mobasheri M, Huete A. Developing Two Spectral Disease Indices for Detection of Wheat

Leaf Rust (Pucciniatriticina). Remote Sens. 2014; 6(6): 4723–40. https://doi.org/10.3390/rs6064723

28. Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in

wheat crops using normalized difference vegetation indices and partial least squares regression.

Remote Sens Environ. 2003; 86(4): 542–53. http://dx.doi.org/10.1016/S0034-4257(03)00131-7.

29. Sankaran S, Mishra A, Maja JM, Ehsani R. Visible-near infrared spectroscopy for detection of Huan-

glongbing in citrus orchards. Comput Electron Agric. 2011; 77(2): 127–34. http://dx.doi.org/10.1016/j.

compag.2011.03.004.

30. Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB. Early detection of Fusarium infection in

wheat using hyper-spectral imaging. Comput Electron Agric. 2011; 75(2): 304–12. http://dx.doi.org/10.

1016/j.compag.2010.12.006.

31. Liu Z-y, Huang J-f, Shi J-j, Tao R-x, Zhou W, Zhang L-l. Characterizing and estimating rice brown spot

disease severity using stepwise regression, principal component regression and partial least-square

regression. J Zhejiang Univ—Sci B. 2007; 8(10): 738–44. https://doi.org/10.1631/jzus.2007.B0738

PMID: 17910117
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