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Abstract: Composite spectrum (CS) is a data-fusion technique that reduces the number of spectra to
be analyzed, simplifying the analysis process for machine monitoring and fault detection. In this work,
vibration signals from five components of a combine harvester (thresher, chopper, straw walkers,
sieve box, and engine) are obtained by placing four accelerometers along the combine-harvester
chassis in non-optimal locations. Four individual spectra (one from each accelerometer) and three
CS (non-coherent, coherent and poly-coherent spectra) from 18 cases are analyzed. The different
cases result from the combination of three working conditions of the components—deactivated
(off), balanced (healthy), and unbalanced (faulty)—and two speeds—idle and maximum revolutions
per minute (RPM). The results showed that (i) the peaks can be identified in the four individual
spectra that correspond to the rotational speeds of the five components in the analysis; (ii) the three
formulations of the CS retain the relevant information from the individual spectra, thereby reducing
the number of spectra required for monitoring and detecting rotating unbalances within a combine
harvester; and, (iii) data noise reduction is observed in coherent and poly-coherent CS with respect to
the non-coherent CS and the individual spectra. This study demonstrates that the rotating unbalances
of various components within agricultural machines, can be detected with a reduced number of
accelerometers located in non-optimal positions, and that it is feasible to simplify the monitoring
with CS. Overall, the coherent CS may be the best composite spectra formulation in order to monitor
and detect rotating unbalances in agricultural machines.

Keywords: composite spectrum; monitoring; vibrations; coherent; non-coherent; poly-coherent;
predictive maintenance; agricultural machine; combine harvester

1. Introduction

Modern agriculture relies on the intensive use of machines [1]. As mechanization increases,
reliance on human operators for the detection of malfunctions is more difficult [2]. Agricultural machines,
such as combine harvesters, are complex machines with multiple shafts rotating at different speeds,
connected to the engine through pulleys and belts, and supported by bearings [3]. Sensors, microprocessors,
and communication devices in modern agricultural machines are used to monitor several operating
parameters [4] and enable the possibility of early fault detection in order to reduce breakdowns and down
time. Predictive maintenance is based on the surveillance of the machines during their operation, in order
to detect the faults prior to breakage [5]. In this way, interventions can be scheduled to prevent failure
during the operation of the machine, thus reducing the maintenance costs [6].

Vibration analysis is considered as the most effective and widely used technique for fault detection
in the predictive maintenance of machines in industrial applications [5–9]. Frequencies related to the
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turning speed of the components can be easily identified in the spectra, due to the residual unbalances.
Also, damage and wear in any of the shafts can increase the unbalance and the amplitude of the
vibration. Therefore, unbalance can be detected as the rotational speed of the shaft increases, because of
incremental vibration [10].

In complex systems, such as agricultural machines, multiple accelerometers are required for
collecting vibration data from all the components to be monitored [11]. Optimum accelerometer
positions are the supports of the axes of the rotating components and the direction perpendicular to
the rotation axis [10]. Nevertheless, as the vibration propagates along the machine structure with
moderate attenuation, the detection of the unbalance is also possible at a location no longer near the
vibration source. However, the vibration signal will be more affected by noise, structural resonances,
vibrations from the other moving parts and, if driving the machine on uneven soil, induced vibrations.
Consequently, measured signal intensity depends on the path from the point of origin of the vibration
to the location of each accelerometer. Studies performed in the field of vibration signals applied to
agricultural machinery are mainly focused on the vibrations that affect the body of a driver [12–17],
and, to the best of our knowledge, there are few works on vibration data processing for predictive
maintenance [18–20].

Vibration data processing for predictive maintenance is a field undergoing continuous advances.
Signal analysis in the time domain, the frequency domain, and the time-frequency domain can be used
to detect faulty conditions [21]. Fault diagnosis can be performed with these techniques, based on
pattern recognition, but they still rely on trained and expert personnel to perform this analysis.
Different techniques based on data-mining or artificial intelligence methods have been studied, in order
to automatize the diagnosis and to avoid the need for a skilled technician [22,23]. Some of these
fault diagnosis techniques, such as support vector machine (SVM) [24] and artificial neural network
(ANN) [25], are limited by their feature extraction from the vibration signal analysis [26]. Deep learning
(DL) can surmount this limitation by extracting features from raw data [27]. Guo [28] integrated a
time-frequency domain technique with a convolutional neural network for diagnosis. Tian [29] used a
deep convolutional neuronal network for feature extraction in combination with an immunity antibody
algorithm for classification.

In the field of predictive maintenance applied to agricultural machinery, our team has analyzed
vibration signals for the detection of the working status of a combine harvester. Ruiz-González et al. [18]
applied the SVM-based classifier for estimating the state of various rotating components with a
vibration signal acquired from a single point on the machine chassis. And Martínez-Martínez et al. [19],
using a single vibration signal, applied an artificial neural network for detecting the status of several
rotary components.

The aforementioned artificial intelligence techniques, such as SVM, ANN, and DL, applied to
vibration, require extensive vibration-data processing [22]. When the number of components to monitor
or the accuracy or the monitorization increases, a higher number of accelerometer signals have to be
analyzed for fault detection, which increases the complexity of the data-processing that is required.

Composite spectrum (CS) is a novel procedure that can be used to reduce the number of vibration
signals to be processed with artificial intelligence techniques. CS fuses several spectra in one single
spectrum maintaining the information of each of them [30,31]. The main advantage of the CS fusion
technique is the reduction of the number of spectrums to be analyzed, simplifying the analysis
process for condition monitoring of machines. Another advantage of this technique is the reduction of
signal noise. Poly-coherent CS has been proposed as an improvement for fault diagnosis in rotating
machines, because it retains the vibration phase information [32]. Previous studies using CS have
been performed on a test rig to detect shaft misalignment, seal rubbing, and cracks [30–32]. In all
these studies, the accelerometers were placed directly on the supports of the axes of the rotating
components and perpendicular to the rotating axis, which are considered the optimal locations. To our
knowledge, only one study using CS technique has been performed on a real machine—a steam turbine
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generator—for detecting misalignment [33]. CS has been used in conjunction with PCA [34] and
ANN [35] for classifying rotating machine faults.

The first objective of this work is to demonstrate the possibility of monitoring and detecting
rotating unbalances within various components in agricultural machines with a reduced number of
accelerometers, which moreover are not placed in the optimum locations and orientations. The second
objective is to study the feasibility of CS fusion technique for this detection, comparing the individual
spectra with the non-coherent, coherent and poly-coherent CS. The third objective is to compare the
noise related data in all the spectra that are analyzed.

For this purpose, four accelerometers were installed along the chassis of a combine harvester.
Access to the optimum points or the optimum direction for the installation of accelerometers within
agricultural machines is never straightforward. The accelerometers were not directly installed on the
bearing supports but rather was installed at quite some distance from the rotating axis in order to obtain
a more general application for different machines with different axis orientations. Furthermore, in three
of the four accelerometers, the direction of the accelerometers was not perpendicular to the unbalanced
shaft. Five components of a combine harvester are chosen as the most relevant and representatives
of the operation of the combine harvester: the thresher, the chopper, the straw walkers, the sieve
box, and the engine. These components will be studied in different working conditions: (i) with the
thresher and/or the chopper deactivated (off), activated and balanced, and activated and unbalanced;
and (ii) at idle and at maximum rotating speed. The combination of these working conditions will give
18 different cases. For each case, four individual spectra and three different formulations of the CS will
be studied: the non-coherent, the coherent, and the poly-coherent CS.

2. Materials and Methods

This section will be divided into five parts. In Section 1, the equipment used for the data
acquisition will be described. In Section 2, the 18 cases under analysis will be summarized, detailing the
different working conditions and speed of the five components of the combine harvester. In Section 3,
the procedure followed for monitoring the vibration data will be outlined. Explanations may be found
in Section 4 on the procedure followed to calculate the non-coherent, coherent, and poly-coherent CS.
Finally, the statistical analysis will be reported in the fifth part.

2.1. Equipment

A 12-year-old New Holland TC-56 combine harvester (New Holland Agriculture, New Holland,
PA, USA) with around 4000 working hours, equipped with a Moresil 718 sunflower header (Moresil SL,
Posadas, Spain) with seven rows, was used as the agricultural machine for the tests.

Four PCB 333B40 accelerometers (PCB Group Inc., Depew, NY, USA) were installed on the combine
harvester, at arbitrary positions, for recording the vibration signal. Accelerometers a1, a2, and a3 were
located on the left side of the chassis, oriented in the lateral direction, at a distance from the rear wheel
axle of 300, 1980, and 3006 mm, respectively, and at a height from the floor of 1010, 1040, and 1560 mm,
respectively. The fourth accelerometer (a4) was located on the left side of the lower rear beam of
the header, at a distance of 1520 mm from the header center, oriented in the longitudinal direction.
Accelerometers were positioned by using adhesive wax, permitting accurate measurements within this
frequency range. The components and position of the accelerometers are represented in Figure 1.

Vibration signal data were acquired from the accelerometers, using a National Instruments NI-9234
data-acquisition module (National Instruments Corp., Austin, TX, USA) for analog input, mounted on
a National Instruments NI CompactDAQ-9172 chassis, connected via USB cable to a laptop computer.

The software used for the data acquisition was NI Sound and Vibration Assistant, and the program
used for the data analysis was MATLAB (The MathWorks Inc., Natick, MA, USA).
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Figure 1. Diagram of a combine harvester. The blue arrows represent the location of the thresher, the 
yellow ones the location of the engine, and the red ones the location of the chopper. The jagged line 
represents the straw walkers and the dotted lines, the sieve box. The blue square symbols show the 
location of the accelerometers, labeled a1–4. 
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activated (on) and deactivated (off) status in conjunction with the thresher. The engine was always 
activated (on). The header of the combine harvester was always deactivated. The combination of the 
thresher and chopper working conditions and the speed yielded 18 different study cases (D1–D18) 
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2.3. Procedure of Vibration Data Acquisition  

A total of 18 different data-acquisition processes were performed, to acquire data in all the status 
cases listed in Table 2. In all cases, the combine harvester was stationary and with the header 
deactivated. Unbalances in the chopper are typically caused by blade breakage against stones in the 
straw, an effect generated in this study by removing one of the chopper blades. Unbalances in the 
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Figure 1. Diagram of a combine harvester. The blue arrows represent the location of the thresher,
the yellow ones the location of the engine, and the red ones the location of the chopper. The jagged line
represents the straw walkers and the dotted lines, the sieve box. The blue square symbols show the
location of the accelerometers, labeled a1–4.

2.2. Case Analyses by the Different Working Conditions and Speed of the Components of the Combine Harvester

The cases under analysis were selected with a combination of different working conditions
and speeds of the components of the combine harvester: (i) velocity of the engine and all the other
components varied between idle and maximum revolutions per minute (RPM); (ii) the thresher and
the chopper varied between off (deactivated) status, balanced (on and healthy) status, and unbalanced
(on and faulty) status; and (iii) the straw walkers and the sieve box varied between activated (on)
and deactivated (off) status in conjunction with the thresher. The engine was always activated (on).
The header of the combine harvester was always deactivated. The combination of the thresher and
chopper working conditions and the speed yielded 18 different study cases (D1–D18) shown in Table 1.

Table 1. Cases studied according to the combination of the component working conditions status
(off, balanced, and unbalanced) and velocity (idle and maximum revolutions per minute (RPM)).

Thresher Status Chopper Status Idle Max. RPM

Off (Deactivated)
Off D1 D10

Balanced D2 D11
Unbalanced D3 D12

Balanced (on and Healthy)
Off D4 D13

Balanced D5 D14
Unbalanced D6 D15

Unbalanced (on and Faulty)
Off D7 D16

Balanced D8 D17
Unbalanced D9 D18

2.3. Procedure of Vibration Data Acquisition

A total of 18 different data-acquisition processes were performed, to acquire data in all the
status cases listed in Table 2. In all cases, the combine harvester was stationary and with the header
deactivated. Unbalances in the chopper are typically caused by blade breakage against stones in the
straw, an effect generated in this study by removing one of the chopper blades. Unbalances in the
thresher are usually caused when its bars suffer from non-uniform wear due to usage. This effect was
generated by attaching an eccentric weight to the thresher.
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Table 2. Speeds of the components of the combine harvester at idle and at maximum RPM.

Regime Thresher Chopper Straw Walkers Sieve Box Engine

Idle 8.5 Hz (508.3 RPM) 25.4 Hz (1524 RPM) 2 Hz (180 RPM) 3 Hz (120 RPM) 21.4 Hz (1280 RPM)
Max. RPM 14.26 Hz (839.5 RPM) 42.54 Hz (2517 RPM) 3.5 Hz (318 RPM) 5.3 Hz (210 RPM) 35.8 Hz (2144 RPM)

For each combine harvester status, five 12-second-long measurements were recorded from each of
the four accelerometers, at a sample rate of 1706.48 Hz.

Non-coherent, coherent, and poly-coherent CS from the 18 cases were calculated, by dividing each
measurement into 11 segments, with 6820 samples each segment, and applying a Hanning window
with an overlap of 80%.

The rotation speeds of the different components of the combine harvester (Table 2) were measured
with a tachometer, in order to identify the peak relative to the fundamental frequency of each component
in the spectra. The speed of the thresher, chopper, straw walkers, sieve box, and engine at idle and
maximum RPM are shown in Table 2.

2.4. Composite Spectrum Calculation

The calculation of the three different formulations of the CS has been obtained as follow.

2.4.1. Power Spectrum Density and Cross Power Spectrum Density

The power spectrum density is calculated as follows,

Sxx( fk) =
∑n

r=1 Xr( fk)·Xr∗( fk)
n

, k = 1, 2, 3, . . . , N (1)

where Sxx( fk) is the power spectrum density, Xr( fk) and Xr∗( fk) are the Fourier transform signal and
its conjugated series for the N frequencies fk and for the r-th fragment of a signal divided in n samples.

The cross power spectrum density is calculated as follows,

Sxpxp+1( fk) =

∑n
r=1 Xr

p( fk)·Xr
p+1
∗( fk)

n
, k = 1, 2, 3, . . . , N (2)

where, Xr
p( fk) is the Fourier transform for sensor p; and Xr

p+1
∗( fk) is the conjugated Fourier transform

for sensor p + 1.

2.4.2. Non-Coherent CS

SCS( fk) is the non-coherent CS, resulting from combining the signals from several accelerometers,
calculated as proposed by Elbhbah and Sihna [30,31],

SCS( fk) =

∑n
r=1 Xr

CS( fk)Xr
CS
∗( fk)

n
, k = 1, 2, 3, . . . , N (3)

XCS
r( fk) and XCS

r∗( fk) are the composite Fourier transforms and the Fourier transform conjugate
for the r-th fragment of a signal.

The composite Fourier transform, for b accelerometers, is calculated as the geometric means of the
cross-power spectrum densities as follows:

Xr
CS( fk) =

√(
Sr

x1x2
( fk)·Sr

x2x3
( fk)· . . . ·Sr

x(b−1)xb
( fk)

)1/(b−1)
, k = 1, 2, 3, . . . , N (4)
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2.4.3. Coherent Cross Power Spectrum Density, Coherent Composite Fourier Transform and Coherent CS

Coherent CS has been proposed [30,31], in order to cancel out the contribution of contamination
by non-correlated signals from different sources. The coherence function is used to eliminate the
contribution of these signals.

γ2
p(p+1)( fk) =

∣∣∣∣∑n
r=1 Sr

xpxp+1
( fk)

∣∣∣∣2∑n
r=1 Sr

xpxp
( fk)

∑n
r=1 Sr

xp+1xp+1
( fk)

, k = 1, 2, 3, . . . , N (5)

Sr
xpγp(p+1)xp+1

( fk) is the coherent cross power spectrum density for accelerometer signals p and p +

1, which is calculated as follows:

Sr
xpγp(p+1)xp+1

( fk) = [Xr
p( fk)·γ2

p(p+1)( fk)·Xr
p+1
∗( fk)], k = 1, 2, 3, . . . , N (6)

The coherent composite Fourier transform for frequency, fk, is:

Xr
CCS( fk) =

√(
Sr

x1γ12x2
( fk)·Sr

x2γ23x3
( fk)· . . . ·Sr

x(b−1)γ(b−1)bxb
( fk)

)1/(b−1)
, k = 1, 2, 3, . . . , N (7)

The coherent CS can be calculated as

SCCS( fk) =

∑n
r=1 Xr

CCS( fk)Xr
CCS
∗( fk)

n
, k = 1, 2, 3, . . . , N (8)

XCCS
r( fk) and XCCS

r∗( fk) are the coherent composite Fourier transforms and the conjugated
transforms for the r fragment of a signal.

2.4.4. Poly-Coherent CS

Non-coherent and Coherent CS lose phase-angle information as result of the multiplication of
composite coherent Fourier Transform by its conjugate series. Yunusa-Kaltungo et al. [32] proposed a
poly-coherent CS, SpCCS( fk) , to retain the phase-angle information, calculated as follows:

SCS( fk) =

(∑n
r=1 Xr

1( fk)·γ12·Xr
2( fk)·γ23·Xr

3( fk)· . . . ·Xr
(b−1)

( fk)·γ(b−1)b·Xr
b
∗( fk)

) 1
b

n
, k = 1, 2, 3, . . . , N (9)

2.5. Statistical Analysis

All statistical analyses were conducted using Excel statistical functions. The 18 cases were grouped
by working conditions (off, balanced, unbalanced) and speed (idle or max RPM). Between-group
differences for selected continuous variables (peak amplitudes of the fundamental frequencies) were
examined with the Student’s t test for paired samples. The significance level was set at p < 0.0001.

Effect sizes are used to describe the strength of a phenomenon, to determine whether differences
are of a relevant magnitude. We reported effect size measured by Cohen’s d and effect size (r) [36].
Cohen reported the following intervals for d: 0.2 to 0.4: small effect; 0.5 to 0.7: intermediate effect; 0.8 and
higher: strong effect. We chose the following labels, in order to classify the magnitude of the differences
obtained between groups: A: higher differentiation, if Cohen’s d was >3.5; B: medium differentiation,
if Cohen’s d was <3.5); and, C: lower differentiation, if Cohen’s d was <2.5.

The area under the curve (AUC) was used to compare the noise in the different spectra. The AUC
was calculated in two ways: (i) for all points integrating the spectrum points from 0 Hz to 120 Hz;
and, (ii) for the 50% of the points of lower height. With these two values, an AUC ratio is calculated:
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AUC of half of the spectrum points that have a value/AUC that is lower than the total integration of
the spectrum.

3. Results

The comparison between the component peak amplitudes of the rotational speed frequency within
the spectra and the noise-related data was analyzed in two ways. In Section 3.1, the spectra of two
cases (Cases D14 and D18) will be compared. These cases are shown, in order to provide an overview
of the five components in the spectra under analysis. Cases D14 and D18 were choosen as the most
representative of the real operation of the harvester, because in both cases all the components under
study were activated and working at maximum RPM, with all the components balanced in Case 14
and unbalanced in Case 18. Moreover, the coherence functions are also presented for Case 18.

In Section 3.2, all cases (D1 to D18) were analyzed and the data were statistically compared.

3.1. Analysis and Comparisons of Two Cases, with the Thresher and the Chopper, Both in Balanced (Case D14)
and Unbalanced (Case D18) Conditions, and with the Motor at Maximum Rotational Speed

In Sections 3.1.1 and 3.1.2, the spectra from two of the 18 possible cases presented in Table 1
(cases D14 and D18) are presented. Section 3.1.1 presents the individual spectra from the four
accelerometers, and Section 3.1.2 presents the three different formulations of the CS: non-coherent-CS,
coherent-CS, and poly-coherent-CS. Section 3.1.3 presents the Coherence functions for case D18,
which is the case with the highest noise present in the signal.

3.1.1. Individual Spectra: Identification of the Components by Their Peaks and Comparisons of the
Amplitudes of the Peaks in the Four Spectra in Cases D14 and D18

Figures 2 and 3 presents the individual spectra from the four accelerometers corresponding to
cases D14 and D18, respectively. In both cases the combine harvester is working at maximum rotational
speed with both the thresher and the chopper engaged, but in case D14 it is working in a balanced
(healthy) condition, and in case D18 it is working in an unbalanced (faulty) condition.

In the four individual spectra, the peaks corresponding to the rotational speed of the different
components under analysis can be identified. Various peaks are shown at the fundamental frequency,
which is the rotational speed: the straw walkers at 3.5 Hz, the sieves box at 5.3 Hz, the thresher at
14.3 Hz, the engine at 35.8 Hz, and the chopper at 42.5 Hz. The peaks corresponding to the harmonic
frequencies can also be identified: the straw walkers 2x at 7.0 Hz, the sieve box 2x at 10.6 Hz, the thresher
2x at 28.5 Hz, the chopper 2x at 85.1 Hz, the 1.5x engine frequency at 53.7 Hz, the 2x engine frequency
at 71.6 Hz, the 2.5x engine frequency at 89.5 Hz, and the 3x engine frequency at 107.4 Hz.

When we visually compare the amplitudes of the peaks at the fundamental frequencies of the four
spectra a0–3 for case D14 (Figure 2, balanced condition), with the a1–4 spectra of case D18 (Figure 3,
unbalanced condition), unbalanced (D18) can be shown to imply an increment in the peak heights
corresponding to the turning frequency of the components. This increment appears for the thresher 5.4,
4.7, 4.7, and 1.8 times, and for the chopper 10, 2.3, 2.7, and 8.3 times, within spectrums a1–4 respectively.
The proportion between the peak increments is not the same in the four spectra due to the dependency
on the position and orientation of the accelerometers. The peaks corresponding to the frequencies of
the straw walkers, the sieve box, and the engine, imply no increment to the height amplitude when
comparing case D18 (Figure 3) with case D14 (Figure 2), because these components remain balanced in
all the cases.

3.1.2. Composite Spectra: Identification of the Components by Their Peaks and Comparisons of the
Amplitudes of the Peaks in the Non-Coherent, Coherent, and Poly-Coherent CS for Cases D14 and D18

Figures 4 and 5 present the three different formulations of the CS (non-coherent-CS, coherent-CS,
and poly-coherent-CS) corresponding to cases D14 and D18, respectively. CS has been calculated



Sensors 2020, 20, 5519 8 of 22

using the previous four spectra presented in Figures 2 and 3, respectively. The non-coherent, coherent,
and poly-coherent CS formulations are defined in Equations (4), (8) and (9), respectively.

In the three formulations of the CS for both cases, the peaks corresponding to the rotational speeds
of the different components can also be identified: the straw walkers, the sieve box, the thresher drum,
the engine, and the chopper, and their harmonic, at the same frequencies as shown previously in the
individual spectra.

When comparing case D18 (Figure 5) with case D14 (Figure 4), an increment can be observed in the
peak amplitudes at thresher and chopper frequencies of the non-coherent, coherent, and poly-coherent
CS in case D18, due to the unbalance of these components. This increment appears to be for the thresher
2.3, 2.4, and 2.3 times, and for the chopper 4.6, 4.0, and 7.0 times, for the non-coherent, coherent,
and poly-coherent CS, respectively. The peaks corresponding to the frequencies of the straw walkers,
the sieve box, and the engine, did not increment the height amplitude when case D18 was compared
with case D14, because these components remained balanced in all the cases.Sensors 2020, 20, x FOR PEER REVIEW 8 of 23 
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walkers, the sieve box, and the engine, did not increment the height amplitude when case D18 was 
compared with case D14, because these components remained balanced in all the cases. 

Figure 3. Individual spectra from the four accelerometers (a1–4), with the thresher and the chopper
both engaged and unbalanced, with the motor at maximum rotational speed (Case D18).

3.1.3. Coherence Functions for Case D18 and Noise–Data Comparisons between the Composite and
Individual Spectra

In real machines, individual spectra and non-coherent CS present contamination by non-correlated
signals from different sources, referred to as noise. The coherence functions (defined in Equation (5)
calculate the correlation between two signals and are used to calculate the coherent and poly-coherent
CS, in order to reduce contamination from the non-correlated signals. This technique produces a
reduction of the noise in the coherent and poly-coherent CS, with respect to the non-coherent CS,
and the individual spectra.

As an example, Figure 6 presents the three coherence functions between the combinations of the
accelerometers placed in the combine harvester, in relation to case D18. It can be appreciated that all the
coherence functions reach a value close to 1 for the peaks corresponding to the different components of
the machine and its harmonics: straw walkers, sieve box, thresher, chopper, and engine. However,
in the areas of the spectrum where there are no components that produce unbalances, the coherence
functions are close to zero.
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Figure 4. Case D14. Non-coherent, coherent, and poly-coherent composite spectra with the thresher and
the chopper both activated and balanced, with the motor at maximum revolutions per minute (RPM).

Noise attenuation can be visually appreciated when comparing the spectra. The noise is lower in
one spectrum when the number of peaks non-relative to the components are lower and the amplitudes
of these peaks reach a value closer to 0. Accordingly, as shown in Figures 2–5, the noise is lower in the
coherent and poly-coherent CS than in the non-coherent CS and the individual spectra.

3.2. Peak Amplitudes Comparison between the Different Spectra in all cases D1-D18

3.2.1. Peak Amplitudes with the Thresher in Deactivation, Activation, and Failure Working Conditions

Figure 7 and Table 3 present the peak amplitudes comparisons at the fundamental frequency,
which are the rotational speed for the thresher, in the individual spectra (a1–4), and in the CS
(non-coherent, coherent, and poly-coherent), for the 18 cases in the study (D1–D18). In Figure 7,
blue shows the cases with balanced thresher (D4–D6, D13–D15), red shows the cases with an unbalanced
thresher (D7–D9, D16–D18), and black shows the cases with the thresher deactivated (D1–D3, D10–D12).
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Figure 5. Case D18. Non-coherent, coherent, and poly-coherent composite spectra with the thresher
and the chopper both activated and unbalanced, with the motor at maximum RPM.

As visually shown in Figure 7, for the thresher, the activation (balanced condition, red cases) and the
failure (unbalanced condition, blue cases) can be clearly detected by the accelerometers (a1, a2 and a4),
both at idle speed (cases D1 to D9) and at maximum RPM (cases D10 to D18). However, the accelerometer,
a3, differentiated between activation and failure modes quite unclearly.

Statistical comparisons in Table 3 show that, for all individual spectra and for the three CS,
the non-balanced conditions scored significantly higher than the balanced conditions, and the balanced
conditions also scored significantly higher than the deactivated conditions. The magnitude of the
differences between all comparisons can be considered as a strength according to Cohen (Cohen’s d > 0.8),
i.e., the spectra differentiate the status. Nevertheless, when comparing the effect size of all accelerometers
(Table 3), we found, in concordance with previous visual analysis (Figure 7), that the spectra of accelerometer
a3 showed the lowest effect size when comparing balanced vs. deactivated conditions (Cohen’s d = 3.2
at max. RPM), and unbalanced vs. balanced conditions (Cohen’s d = 3.3 at idle and 2.9 at max. RPM).
And the spectra for the pC-CS also showed a lower effect size when comparing balanced vs. deactivated
conditions (Cohen’s d = 3.4 at maximum RPM).
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As visually shown in Figure 7, for the thresher, the activation (balanced condition, red cases) 
and the failure (unbalanced condition, blue cases) can be clearly detected by the accelerometers (a1, 
a2 and a4), both at idle speed (cases D1 to D9) and at maximum RPM (cases D10 to D18). However, 
the accelerometer, a3, differentiated between activation and failure modes quite unclearly. 
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Figure 7. Peak amplitudes for the thresher in the individual spectra (a1–4) and the non-coherent (nCCS),
coherent (CCS), and poly-coherent (pCCS) composite spectra, at idle (a), and at maximum RPM (b).
In blue, the balanced cases; in red, the unbalanced cases; and, in black, the cases where the components
are deactivated.
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Table 3. Sample description and statistical comparison of the peak amplitudes of the thresher, detected
in individual spectra (a1–4), and the non-coherent (nCCS), coherent (CCS), and poly-coherent (pCCS)
composite spectra, under different working conditions (deactivated, balanced and non-balanced) and
at different speeds (at idle and at max. RPM).

Deactivated Balanced Unbalanced Balanced vs.
Deactivated

Unbalancedb vs.
Balanced

N = 15
M (SD)

N = 15
M (SD)

N = 15
M (SD) t p d t p d

a1
Idle 0.0043

(0.0021)
0.1502

(0.0413)
0.6340

(0.0562) 9.61 * 5.2 31.23 * 9.8

Max. 0.0087
(0.0043)

0.4934
(0.1566)

1.7703
(0.2050) 8.73 * 4.4 21.97 * 7.0

a2
Idle 0.0017

(0.0011)
0.0915

(0.0244)
0.3736

(0.0415) 9.90 * 5.4 22.28 * 8.3

Max. 0.0045
(0.0011)

0.3007
(0.0890)

1.1472
(0.1200) 9.19 * 4.7 25.13 * 8.0

a3
Idle 0.0010

(0.0004)
0.0640

(0.0190)
0.1286

(0.0210) 9.16 * 4.9 9.62 * 3.2

Max. 0.0027
(0.0011)

0.3460
(0.1471)

0.8001
(0.1654) 7.09 * 3.3 8.56 * 2.9

a4
Idle 0.0022

(0.0013)
0.2008

(0.0342)
0.4479

(0.0305) 13.49 * 8.5 25.76 * 7.6

Max. 0.0048
(0.0012)

0.3793
(0.0973)

0.9146
(0.0667) 10.18 * 5.4 18.89 * 6.4

nCCS
Idle 0.0009

(0.0007)
0.0822

(0.0209)
0.2907

(0.0272) 10.25 * 5.7 27.75 * 8.6

Max. 0.0015
(0.0008)

0.3065
(0.1194)

1.0376
(0.1286) 7.58 * 3.6 19.21 * 5.9

CCS
Idle 0.0015

(0.0008)
0.0936

(0.0147)
0.2928

(0.0268) 14.26 * 9.2 23.45 * 9.2

Max. 0.0036
(0.0011)

0.3377
(0.1012)

1.0467
(0.1247) 9.13 * 4.7 19.84 * 6.2

pCCS Idle 0.0006
(0.0006)

0.0660
(0.0185)

0.2538
(0.0195) 9.61 * 5.2 35.53 * 9.9

Max. 0.0008
(0.0006)

0.2308
(0.0969)

0.8178
(0.0898) 7.18 * 3.4 20.70 * 6.3

M (SD): median (standard deviation). N = number of cases in that condition (deactivated, balanced or non- balanced)
x number of trials in each case (five) = 3 × 5. * p < 0.0001. Bold font highlights the lower effect sizes.

3.2.2. Peak Amplitudes with the Chopper in Deactivation, Activation, and Failure Working Conditions

Figure 8 and Table 4 present the peak amplitude comparisons for the chopper, in the individual
spectra (a1–4), and in the composite spectra (non-coherent, coherent, and poly-coherent), for the
18 cases under study (D1–D18). In Figure 8, blue shows the cases with the chopper balanced (D2, D5,
D8, D11, D14, D17); red shows the cases with the chopper unbalanced (D3, D6, D9, D12, D15, D18);
and black marks the cases with the chopper deactivated (D1, D4, D7, D10, D13, D16).

As visually shown in Figure 8, accelerometers a1 and 2 for the chopper at idle speed (Figure 8a)
showed no clear differentiation between activation (blue) vs. off (black), nor between activation (blue)
vs. failure (red). And at maximum RPM (Figure 8b), accelerometers a1 and 3, and nCCS and pCCS,
showed no clear differentiation between activation (blue) vs. off (black).

Statistical comparisons (Table 4) showed, in accordance with previous visual analysis (Figure 8),
that when comparing balanced vs. off status, the effect sizes of the peak differences were lower for the
accelerometers a1 and a2 at idle RPM (Cohen’s d = 2.2), and for maximum RPM were lower for the
spectra a1 (Cohen’s d = 1.4), a3 (Cohen’s d = 0.8), non-coherent CS (Cohen’s d = 2.6), and poly-coherent
CS (Cohen’s d = 1.7). Moreover, when comparing unbalanced vs. balanced status, the effect size was
lower for the accelerometer a2 at idle speed (Cohen’s d = 2.1).
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Table 4. Sample description and statistical comparison of the peak amplitudes of the chopper detected
in individual spectra (a1–4), and the non-coherent (nCCS), coherent (CCS), and poly-coherent (pCCS)
composite spectra, under different working conditions (deactivated, balanced and non-balanced) and
at different speeds (at idle and at max. RPM).

Deactivated Balanced Unbalanced Balanced vs.
Deactivated

Unbalance vs.
Balanced

N = 15
M (SD)

N = 15
M (SD)

N = 15
M (SD) t p d t p d

a1
Idle 0.0257

(0.0050)
0.0788

(0.0344)
0.2082

(0.0207) 5.15 * 2.2 12.45 * 4.6

Max. 0.0780
(0.0239)

0.2083
(0.1272)

1.8377
(0.4242) 3.62 * 1.4 11.08 * 5.2

a2
Idle 0.0272

(0.0112)
0.0676

(0.0243)
0.2133

(0.0933) 5.58 * 2.2 5.25 * 2.1

Max. 0.0973
(0.0342)

0.3802
(0.0743)

0.8773
(0.0754) 11.94 * 4.9 22.20 * 6.6

a3
Idle 0.0946

(0.0579)
0.4571

(0.0775)
2.6982

(0.2461) 15.33 * 5.4 21.70 * 12.3

Max. 0.1457
(0.1142)

0.2394
(0.1279)

0.9128
(0.1658) 2.14 * 0.8 13.68 * 4.5

a4
Idle 0.0224

(0.0094)
0.1935

(0.0446)
0.9699

(0.0310) 10.68 * 5.5 65.42 * 20.2

Max. 0.0482
(0.0104)

0.4060
(0.0770)

3.1347
(0.2913) 11.85 * 6.5 21.04 * 12.8

nCCS
Idle 0.0227

(0.0120)
0.1354

(0.0286)
0.6069

(0.0760) 12.19 * 5.3 17.08 * 8.2

Max. 0.0480
(0.0217)

0.1745
(0.0640)

1.0872
(0.1347) 6.48 * 2.6 20.18 * 8.7

CCS
Idle 0.0348

(0.0149)
0.1466

(0.0206)
0.6168

(0.0692) 18.06 * 6.3 17.14 * 9.2

Max. 0.0807
(0.0325)

0.2631
(0.0351)

1.1912
(0.0669) 17.32 * 5.4 41.06 * 17.4

pCCS Idle 0.0121
(0.0066)

0.0934
(0.0279)

0.4254
(0.0380) 8.76 * 4.2 31.77 * 10.0

Max. 0.0283
(0.0164)

0.1184
(0.0740)

0.9342
(0.1289) 4.22 * 1.7 20.56 * 7.8

M (SD): median (standard deviation). N = number of cases in that condition (deactivated, balanced or non-balanced)
x number of trials in each case (five) = 3 × 5. * p < 0.0014. Bold font highlights the lower effect sizes.
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coherent (CCS), and poly-coherent (pCCS) composite spectra at idle (a) and at maximum RPM (b).
The balanced cases are shown in blue, the unbalanced cases in red, and deactivated components,
in black.
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3.2.3. Peak Amplitudes with the Straw Walkers and Sieve Box in Deactivation and Activation
Working Conditions

Figure 9 and Table 5 present the peak amplitudes comparisons for the straw walker, and Figure 10
and Table 6 for the sieve box. In this study no unbalanced components were induced. Therefore,
in Figures 9 and 10, the cases with both components activated, because the thresher is activated
(cases D4–D9, D14–D18), are shown in blue, and the cases with the thresher deactivated (D1–D3,
D10–D12) are shown in black.

As can be visually (Figures 9 and 10) and statistically (Tables 5 and 6) shown, in all the spectra the
peak amplitudes clearly differentiate activation (blue) vs. deactivation (black) of the straw walkers and
the sieve box, with a very strong effect size.

Table 5. Sample description and statistical comparison of the peak amplitudes of the straw walkers in
the individual spectra (a1–4) and the non-coherent (nCCS), coherent (CCS), and poly-coherent (pCCS)
composite spectra, under two working conditions (deactivated, activated) and (at idle and at max.
RPM) speeds.

Deactivated Activated Activated vs. Deactivated

N = 15 M
(SD)

N = 45 M
(SD) t p d

a1
Idle 0.0037

(0.0038)
0.1620

(0.0019) 47.87 * 47.3

Max. 0.0030
(0.0024)

0.7594
(0.0178) 735.19 * 73.0

a2
Idle 0.0027

(0.0027)
0.1226

(0.0052) 563.73 * 33.2

Max. 0.0020
(0.0022)

0.6679
(0.0117) 1391.65 * 96.2

a3
Idle 0.0019

(0.0014)
0.0788

(0.0014) 175.83 * 55.5

Max. 0.0012
(0.0010)

0.2379
(0.0038) 2547.26 * 102.4

a4
Idle 0.0057

(0.0033)
0.0639

(0.0017) 27.80 * 19.8

Max. 0.0024
(0.0010)

0.5565
(0.0091) 1049.58 * 105.2

nCCS
Idle 0.0015

(0.0022)
0.0989

(0.0016) 75.13 * 48.3

Max. 0.0010
(0.0016)

0.4692
(0.0080) 1539.22 * 98.0

CCS
Idle 0.0026

(0.0023)
0.0992

(0.0018) 75.11 * 44.4

Max. 0.0016
(0.0015)

0.4692
(0.0080) 1443.09 * 98.3

pCCS Idle 0.0009
(0.0016)

0.0754
(0.0015) 115.25 * 48.1

data 0.0006
(0.0008)

0.3858
(0.0072) 902.67 * 92.6

M (SD): median (standard deviation). N = number of cases in that condition (deactivated or balanced) x number of
trials in each case (five). * p < 0.0001.
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Table 6. Sample description and statistical comparison of the peak amplitudes of the sieve box in the
individual spectra (a1–4) and the non-coherent (nCCS), coherent (CCS), and poly-coherent (pCCS)
composite spectra, under different working conditions (deactivated, activated) and speeds (at idle and
at max. RPM).

Deactivated Activated Activated vs. Deactivated

N = 15 M
(SD)

N = 45 M
(SD) t p d

a1
Idle 0.0101

(0.0106)
0.1216

(0.0406) 20.48 * 4.7

Max. 0.0156
(0.0113)

0.3962
(0.0269) 351.32 * 21.2

a2
Idle 0.0084

(0.0090)
0.1449

(0.0337) 36.32 * 6.9

Max. 0.0082
(0.0055)

0.0848
(0.0058) 69.58 * 13.7

a3
Idle 0.0039

(0.0042)
0.1190

(0.0163) 83.57 * 12.1

Max. 0.0018
(0.0010)

0.0498
(0.0045) 140.03 * 17.8

a4
Idle 0.0056

(0.0043)
0.7263

(0.0395) 222.33 * 33.2

Max. 0.0139
(0.0106)

1.3857
(0.0460) 669.05 * 49.6

nCCS
Idle 0.0052

(0.0063)
0.1716

(0.0313) 50.11 * 9.4

Max. 0.0055
(0.0039)

0.1455
(0.0065) 559.51 * 28.6

CCS
Idle 0.0060

(0.0063)
0.1717

(0.0313) 49.53 * 9.3

Max. 0.0058
(0.0038)

0.1459
(0.0065) 589.59 * 28.8

pCCS Idle 0.0032
(0.0038)

0.1494
(0.0267) 47.40 * 9.9

Max. 0.0051
(0.0038)

0.1658
(0.0072) 747.80 * 31.1

M (SD): median (standard deviation). N = number of cases in that condition (deactivated or balanced) x number of
trials in each case (five). * p < 0.0001.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 

 
(a) 

 
(b) 

Figure 9. Peak amplitudes of the straw walkers in the individual spectra (a1–4) and the non-coherent 
(nCCS), coherent (CCS), and poly-coherent (pCCS) composite spectra, at idle (a), and at maximum 
RPM (b). The cases where the components are activated are shown in blue and the deactivated 
components are shown in black. 

Table 5. Sample description and statistical comparison of the peak amplitudes of the straw walkers 
in the individual spectra (a1–4) and the non-coherent (nCCS), coherent (CCS), and poly-coherent 
(pCCS) composite spectra, under two working conditions (deactivated, activated) and (at idle and at 
max. RPM) speeds. 

  Deactivated Activated Activated vs. Deactivated  
  N = 15M (SD) N = 45M (SD) t p d 

a1 
Idle 0.0037 (0.0038) 0.1620 (0.0019) 47.87 * 47.3 

Max. 0.0030 (0.0024) 0.7594 (0.0178) 735.19 * 73.0 

a2 
Idle 0.0027 (0.0027) 0.1226 (0.0052) 563.73 * 33.2 

Max. 0.0020 (0.0022) 0.6679 (0.0117) 1391.65 * 96.2 

a3 
Idle 0.0019 (0.0014) 0.0788 (0.0014) 175.83 * 55.5 

Max. 0.0012 (0.0010) 0.2379 (0.0038) 2547.26 * 102.4 

a4 
Idle 0.0057 (0.0033) 0.0639 (0.0017) 27.80 * 19.8 

Max. 0.0024 (0.0010) 0.5565 (0.0091) 1049.58 * 105.2 

nCCS 
Idle 0.0015 (0.0022) 0.0989 (0.0016) 75.13 * 48.3 

Max. 0.0010 (0.0016) 0.4692 (0.0080) 1539.22 * 98.0 

CCS 
Idle 0.0026 (0.0023) 0.0992 (0.0018) 75.11 * 44.4 

Max. 0.0016 (0.0015) 0.4692 (0.0080) 1443.09 * 98.3 

pCCS 
Idle 0.0009 (0.0016) 0.0754 (0.0015) 115.25 * 48.1 
data 0.0006 (0.0008) 0.3858 (0.0072) 902.67 * 92.6 

M (SD): median (standard deviation). N = number of cases in that condition (deactivated or balanced) 
x number of trials in each case (five). * p < 0.0001. 

Figure 9. Peak amplitudes of the straw walkers in the individual spectra (a1–4) and the non-coherent
(nCCS), coherent (CCS), and poly-coherent (pCCS) composite spectra, at idle (a), and at maximum RPM
(b). The cases where the components are activated are shown in blue and the deactivated components
are shown in black.
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Figure 10. Peak amplitudes of the sieve box in the individual spectra (a1–4) and the non-coherent
(nCCS), coherent (CCS), and poly-coherent (pCCS) composite spectra, at idle (a), and at maximum
RPM (b). The balanced cases are shown in blue and the deactivated components are shown in black.

3.2.4. Summary of the Magnitude of the Differences of the Peak Amplitudes for Each Spectrum
According to the Different Component Status

Table 7 summarizes the magnitude (effect size) of the differences of the peak amplitudes according
to the status (deactivated, activated (healthy) or unbalanced (faulty)) of the components (thresher,
chopper, straw walkers and sieve box) at idle and at maximum RPM.

Table 7. Magnitudes (effect sizes) of the capacity to differentiate the status (deactivated, activated
or unbalanced) of the components of a combine harvester functioning at two speeds (idle and
maximum RPM) in the four individual spectra (a1–4) and in the non-coherent (nCCS), coherent (CCS),
and poly-coherent (pCCS) composite spectra.

Thresher Chopper Straw Walkers Sieve Box

Balanced vs.
Deactivated

Unbalanced vs.
Balanced

Balanced vs. Off
Status

Unbalanced vs.
Balanced

Balanced vs.
Deactivated

Balanced vs.
Deactivated

Idle Max
RPM Idle Max

RPM. Idle Max.
RPM idle Max

RPM Idle Max
RPM Idle Max

RPM

a1 A A A A C C A A A A A A
a2 A A A A C A C A A A A A
a3 A B B B A C A A A A A A
a4 A A A A A A A A A A A A

nCCS A A A A A B A A A A A A
CCS A A A A A A A A A A A A

pCCS A B A A A C A A A A A A

Abbreviations. Effect sizes are represented by A: higher differentiation (Cohen’s d > 3.5), B: medium differentiation
(Cohen’s d < 3.5); C: lower differentiation (Cohen’s d < 2.5).

As shown in Table 7, the four individual spectra and the three CS clearly show the differences between
the three working conditions (off, balanced, unbalanced) for the four components (Cohen’s d > 0.8).
Each spectrum was divided into three categories for comparison by effect size: A: higher differentiation
(Cohen’s d > 3.5), B: medium differentiation (Cohen’s d < 3.5), and C: lower differentiation (Cohen’s d < 2.5).

The individual spectra of accelerometers a1 and a2, for the chopper, showed a lower capacity
(Cohen’s d < 2.5) for differentiating between balanced vs. off status at both speeds, and unbalanced vs.
balanced status at idle speed. Accelerometer a3, for the thresher, showed a medium differentiation
(Cohen’s d < 3.5) between balanced vs. off status at Max RPM, and between unbalanced vs. balanced
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status at both speeds; and, for the chopper, showed a lower capacity (Cohen’s d < 2.5) for differentiating
balanced vs. off status at Max RPM. The individual spectra from accelerometer a4 provided a clear
differentiation for all the cases (Cohen’s d > 3.5).

The poly-coherent CS provided a medium differentiation (Cohen’s d < 3.5) when comparing balanced
vs. off status at Max RPM for the thresher (Cohen’s d < 3.5) and a lower differentiation (Cohen’s d < 2.5) for
the chopper. The non-coherent CS provided a medium differentiation (Cohen’s d < 3.5) when comparing
balanced vs. off status at Max RPM for the chopper. And the coherent CS provided a clear differentiation
for all the cases (Cohen’s d > 3.5).

In summary, the a4 individual spectra and the coherent CS presented the best capacity for
differentiating the three working conditions (off, balanced, unbalanced).

3.2.5. Area Under the Curve Comparisons in the Different Spectra (Individuals, Non-Coherent CS,
Coherent CS, and Poly-Coherent CS) in all Cases (D1–D18)

Table 8 presents the area under the curve (AUC) ratios for all case studies, and the percentage
reduction when comparing the ratios of the poly-coherent CS with the ratios of the coherent CS,
non-coherent CS and the summation of the four individual spectra.

Table 8. Noise related data (AUC ratio) and comparisons of percentage reduction between the s the
non-coherent (nCCS), coherent (CCS), and poly-coherent (pCCS) composite spectra, and the summary
of the four individual spectra, for each of the 18 cases under study.

Cases
AUC 1 Ratio AUC Ratio Reduction

pCCS CCS nCCS Individual
Spectra 3 pCCS vs. CCS 2 pCCS vs. nCCS pCCS vs. Individual

Spectra 3

D1 6.8% 8.9% 14.7% 12.7% 24.1% 54.1% 46.5%
D2 6.5% 8.7% 15.2% 13.0% 25.0% 57.3% 49.8%
D3 6.3% 8.2% 14.3% 12.7% 23.4% 56.0% 50.4%
D4 12.3% 17.1% 25.8% 19.4% 27.8% 52.3% 36.4%
D5 12.3% 17.0% 25.8% 19.4% 27.7% 52.5% 36.7%
D6 12.3% 16.8% 25.8% 20.2% 26.7% 52.2% 38.9%
D7 11.8% 16.7% 25.5% 19.0% 29.1% 53.6% 37.7%
D8 11.9% 16.7% 26.1% 19.6% 28.8% 54.5% 39.5%
D9 11.8% 16.4% 25.4% 19.4% 28.0% 53.4% 38.9%
D10 5.6% 7.8% 13.8% 11.6% 27.8% 59.4% 51.6%
D11 6.3% 8.7% 15.4% 12.0% 27.7% 59.2% 48.0%
D12 8.5% 11.4% 17.4% 14.5% 25.1% 51.1% 41.2%
D13 14.5% 19.6% 27.4% 20.3% 26.4% 47.3% 28.9%
D14 14.4% 19.5% 27.5% 20.4% 25.9% 47.6% 29.2%
D15 14.6% 19.5% 26.4% 20.1% 25.2% 44.7% 27.3%
D16 13.7% 18.9% 26.9% 20.5% 27.4% 49.1% 33.3%
D17 14.5% 19.5% 27.2% 20.6% 25.7% 46.6% 29.4%
D18 13.1% 18.2% 25.8% 19.8% 28.0% 49.3% 34.0%

Min. 5.6% 7.8% 13.8% 11.6% 23.4% 44.7% 27.3%
Max. 14.6% 19.6% 27.5% 20.6% 29.1% 59.4% 51.6%
Avg. 11.0% 15.0% 22.6% 17.5% 26.7% 52.2% 38.8%

Std. Dev. 3.3% 4.6% 5.5% 3.5% 1.6% 4.2% 7.8%
1 AUC (area under the curve) ratio: AUC of the 50% lower points/AUC of the total spectrum. 2 AUC ratio reduction:
1—pCCS AUC ratio/CCS AUC ratio. 3 Median of the four individual spectra.

As shown in Table 8, the poly-coherent CS presented the higher noise reduction, followed in order
by the coherent CS, the non-coherent CS, and the individual spectra. The average percentage of the
ratio reduction of the poly-coherent CS was 34.9% compared with the coherent CS, 52.2% compared
with the non-coherent CS, and 38.8% compared with the summation of the four individual spectra.

4. Discussion

The first relevant result of this study is that rotating unbalances of various components within
agricultural machines can be monitored and detected with a reduced number of accelerometers,
which are neither directly placed on the bearing supports, nor are they always perpendicular to the
rotating axis. As it can be seen in the result section (Figures 2–5), the frequencies corresponding to the
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different components, such as thresher, chopper, straw walkers, sieve box and engine, were identified by
the four accelerometers. So, all five components are well identified across all the spectra, however some
components are better identified in one spectrum, and other components in another. In some cases,
likewise, the peak corresponding to the rotation frequency is better identified in one spectrum, and
the harmonic peaks are better identified in another. Additionally, depending on the combination
of the three working conditions of the thresher and the chopper (deactivated, activated (healthy) or
unbalanced (faulty), at idle or at maximum RPM), the peaks are better identified in one spectrum
or in other. In our study, only accelerometer a4, positioned facing in the direction of the vibration
in the combine harvester header, gives a clear differentiation for all the cases (Table 7), even though
it was the farthest from all the five studied components. The other accelerometers a1–3, which can
also detect activation and failure of the components, were not located in the direction of the vibration.
Moreover, the capacity to identify the on/off condition of the straw walker and the sieve box is higher
(higher effect size) than for the other components; which can be explained by their greater field of
movement, as they are located in peripheral positions. In summary, these results suggest that an
arbitrary and unusual location of the accelerometers may be useful for monitoring and fault diagnosis
for other types of agricultural machines. To our knowledge, no previous studies have been published
on monitorization and detection of rotating unbalances of various components within real machines
using accelerometers that are not placed on the bearing supports or perpendicular to the rotating axes.

The second important result is that the use of CS, coherent, non-coherent, and poly-coherent for the
monitorization and the detection of rotating unbalances in agricultural machines is feasible. CS retains
the relevant information from the individual spectra, reducing the number of spectra to be analyzed,
and thereby, simplifying the analysis process. Frequencies corresponding to the monitored components
can be easily identified in the CS. The three composite spectra formulations retain the relevant
information for the monitoring and fault detection of the components (as shown when comparing CS
with individual spectra from each accelerometer). In our study, the three different formulations of the
CS clearly differentiated all the component statuses of the thresher, the chopper, the straw walkers and
the sieve box, except for the activation versus the deactivation status of the chopper and the thresher
at maximum RPM, which was not so clear (lower effect size) in the non-coherent CS for the chopper,
and poly-coherent CS for the chopper and the thresher. These results suggest that the coherent CS
may be the best composite spectra formulation, in order to monitor and to detect rotating unbalances
in agricultural machines. Future research is needed, in order to confirm this finding. In summary,
this study prompts the thought that monitoring and fault diagnosis for all the machine components
can be based on the analysis of a single CS instead of using the individual spectra set from several
accelerometers. A review of the literature shows that the few previous studies using the CS technique
were performed mainly over a test rig [25–27], to monitor shaft misalignment, shaft cracking, and seal
rubbing. Only one study was applied to a real machine, a turbo generator, where the misalignment
was detected with the fusion of fourteen accelerometers [28]. In contrast, in the present study we used
only four accelerometers for monitoring up to five components.

The third result of this study showed that both the coherent and the poly-coherent CS presented
an overall noise reduction in comparison with the non-coherent CS (Figures 4 and 5) and with the
individual spectra (Figures 2 and 3). This result is in concordance with previous studies performed
over a test rig [25–28]. This noise reduction of the coherent and poly-coherent CS can be important for
agricultural machines, because they work a noisy environment and with multiple components that
can produce noise due, for instance, to axel turns at several velocities, belts, chains, bars with friction,
oscillation movements, etc.

The current study has several strengths. First, it is an innovative study because, as far as we
know, this is the only study with arbitrarily positioned accelerometers, not on the supports of the
rotating shafts, and at quite some distance from the bearing supports, whereas the accelerometers
were placed on the rotating supports in previous studies. Although this arbitrary positioning makes
detection and monitoring of rotating unbalances more difficult, the results of this study have proven
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its feasibility. The second innovation of this study is that, as far as we know, this is the first study
that has applied the CS technique for diagnosis of rotating unbalances and the second study applied
on a real machine. Finally, as an advance, compared with previous studies, the monitoring system
proposed in this study simplified the monitoring process and can be easily implemented in other
types of machines, for several reasons: (i) the accelerometers do not have to be located only on the
shafts supports, and can be positioned at a distance from the vibration source. This is an important
aspect, due to the difficulty of positioning the accelerometers at optimal locations and orientations
within certain machines. (ii) Besides, the accelerometers can be located arbitrarily, with no need to
know the best place to measure the vibration signal in advance, because the use of the CS retains
information on all the individual spectra. (iii) This monitoring system requires a reduced number of
accelerometers in comparison with the standard mode of positioning a pair of accelerometers on each
rotating shaft. In this way, each accelerometer that is installed detects the vibration signal of all the
components of the machine. This is a great advantage in modern agricultural machines, which have
multiple shafts rotating at different speeds, and monitoring each individual component would require
a high number of accelerometers. And, (iv) using the CS means that there is only one spectrum for
analysis, in comparison with the traditional procedures.

The main limitation of the use of CS is that it requires additional post-processing of the signal, in order
to obtain the CS, with respect to the analysis of the individual spectra. However, the postprocessing work
is compensated by the reduction in the number of spectra to be analyzed. Another limitation is that since
the location of the accelerometers is arbitrarily chosen, the best location for the accelerometers will not
be known a priori. Finally, other rotating components that generate vibration such as the beater cylinder,
the cleaning fan, the hydrostatic pump, the elevator chains, the augers, and the drum variators, were not
studied in this work. Some of these components also generate friction-induced vibration. Nevertheless,
despite these additional sources of vibrations, the CS was capable of detecting the unbalanced elements
under study.

5. Conclusions

In summary, this study suggests that (1) it is possible to monitor and to detect the rotating unbalances
of various components within agricultural machines with a reduced number of accelerometers, which are
moreover not placed in the usual optimum positions and orientations. (2) The use of the CS (coherent,
non-coherent, and poly-coherent) for monitoring and detecting rotating unbalances in agricultural machines
is feasible. CS retains the relevant information for the fault diagnosis, reducing the number of spectra
required. (3) Coherent and poly-coherent CS reduce the data noise with respect to the non-coherent CS and
the individual spectra, in noisy environments. Overall, the coherent CS may be the best composite spectra
formulation, in order to monitor and to detect rotating unbalances in agricultural machines.

The monitoring system proposed in this study has not only shown its sensitivity to fault detection
but has also simplified the monitoring process and can be easily implemented in other types of machines.
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