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A B S T R A C T   

BLDC motor applications require precise position and speed measurements, traditionally obtained with sensors. 
This article presents a method for estimating those measurements without position sensors using terminal phase 
voltages with attenuated spurious, acquired with a FPGA that also operates a PWM-controlled inverter. Voltages 
are labelled with electrical and virtual rotor states using an encoder that provides training and testing data for 
two three-layer ANNs with perceptron-based cascade topology. The first ANN estimates the position from fea-
tures of voltages with incremental timestamps, and the second ANN estimates the speed from features of position 
differentials considering timestamps in an acquisition window. Sensor-based training and sensorless testing at 
125–1,500 rpm with a loaded 8-pole-pair motor obtained absolute errors of 0.8 electrical degrees and 22 rpm. 
Results conclude that the overall position estimation significantly improved conventional and advanced 
methods, and the speed estimation slightly improved conventional methods, but was worse than in advanced 
ones.   

1. Introduction 

For over the last few years, brushless DC (BLDC) motors have quickly 
gained popularity due to their excellent characteristics and structure, 
which make them suitable for a wide variety of applications from low 
speed to high speed, such as electric vehicles and safety critical systems 
for the aerospace industry [1]. However, brushed DC (BDC) motors with 
position sensors have traditionally been used in applications that require 
precise detection (on the order of millimetres or centimetres), such as 
bio-inspired robots for medical cancer prevention [2] and robots for the 
automatic characterization of the radiation pattern of mobile phone base 
stations [3,4]. The advantages of BLDC motors over BDC, induction, and 
switched reluctance motors have promoted their popularity, such as 
exceptional speed and torque performance, energy savings, long oper-
ating life with reliability, and noiseless operation [5]. 

Many industrial applications with BLDC motors require precise speed 
and position measurements for rotor phase commutation. This operation 
is traditionally performed with sensors that are mounted inside the 
motor, as hall-effect units, or externally connected to the shaft, such as 

resolvers and encoders [6]. However, these devices increase the cost and 
size of the motors, restricting their applications, and the stressful oper-
ating conditions to which they are subjected could deteriorate signal 
measurements and cause failures [7]. To overcome these disadvantages, 
sensorless methods have emerged in recent years to estimate the rotor 
position and speed information from electrical signals, such as the phase 
terminal voltages [8], back-electromotive forces (BEMF) [9], conducting 
interval detection of inverter free-wheeling diodes [10], and current 
variation with stator core magnetic saturation [11]. 

Many efforts of different stakeholders have promoted the develop-
ment of a wide variety of sensorless methods. The most popular category 
is based on the measurement of BEMF signals with direct or indirect 
techniques. In direct techniques, the BEMF zero-crossing in the floating 
phase is typically detected [12], but requires the use of filters that add 
attenuation and delay, which is avoided with signal conditioning in 
indirect techniques, such as the Third Harmonic Voltage Sensing [13]. 
However, the limited performance at low speed and the need for an 
open-loop starting strategy of BEMF-based methods have contributed to 
increase the use of techniques based on models and estimators, such as 
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the Sliding Mode Observer (SMO), the Extended Kalman Filter (EKF) and 
artificial intelligence (AI) algorithms. These techniques are widely 
applied to nonlinear systems, but depending on the technique, they have 
disadvantages such as the practical restrictions of SMO [14], and ben-
efits such as accurate estimation with rapid convergence of EKF [15]. 

The results of the investigation included in the present work are of 
interest in the category of AI methods that are used for the identification 
and control of nonlinear dynamic systems, such as motor drives. Many 
publications of the literature are based on the use of AI techniques for 
motion control, as Vas [16] summarises. This category includes a variety 
of branches, such as Artificial Neural Networks (ANNs), Expert Systems, 
Fuzzy Logic (FZL), and Genetic Algorithms [17]. Among all branches of 
AI, ANNs seem to have the most relevant impact in the area of motor 
drives due to their ability to learn complex nonlinear functions with 
accuracy, fault tolerance, and flexibility [18]. ANNs are highly versatile 
as they can be combined with other complex algorithms, such as FZL to 
handle nonstatistical uncertain events [19], or they can use simple 
perceptron-based learning algorithms with low computational re-
quirements, typically achieving similar performance to commonly 
accepted techniques such as EKF [20]. Furthermore, ANNs have been 
used for industrial applications with electric motors, such as estimating 
power consumption of BLDC motors in electrical vehicles such as drones 
[21] and identifying faults in motor elements, such as rotor and stator, 
using multilayer ANNs to optimise the operating life in BLDC motors 
[22,23] and induction motors through a perceptron-based topology 
[24]. The use of ANNs with a multilayer topology to build learning ar-
chitectures also has wide application in estimating the position angle of 
rotational components such as shaft sensors [6] and developing position 
or speed control algorithms for BLDC motors, as a proportional integral 
derivative (PID), to improve the system dynamic response [25] and the 
stability under different motor load conditions through a deep- 
perceptron topology [26]. With these properties, ANNs represents a 
promising field of research for developing new position and speed 
estimation methods for BLDC motor drives [27]. 

The purpose of this article is to estimate the position and speed of a 
BLDC motor based solely on the phase terminal voltages without 
knowing the motor parameters and reference data from a sensor, by 
using simple processing resources. There are several estimation models 
that work with motor characteristics, such as the magnetization of the 
stator core [11] or the winding inductance variation [28], and estima-
tors that perform complex functions on motor signals, such as SMO with 
a sinusoidal saturation function for BEMF estimation [29]. The use of 
ANNs is also extended for motor models other than BLDC, such as 
switched reluctance motors [30] and induction motors [31]. Further-
more, the use of ANNs for estimating is applied with different topologies, 
such as diagonally recurrent ANNs to obtain a rapid convergence [32], 
double ANN model connecting estimation models of current and BEMF 
signals [33], and feed-forward ANNs trained with the Levenberg- 
Marquardt algorithm as a simplified network topology for real-time 
deployment [34]. The ANNs implementation tends to be conducted in 
hardware-based platforms, such as Field-programmable Gate Arrays 
(FPGA), to develop innovative learning algorithms with high-level de-
scriptions that enable comprehensive simulations and technology 
demonstrators of low-power consumption and reduced size [35], such as 
efficient and accurate real-time simulators for the fault diagnosis of 
electric drive systems in which the control algorithms and operating life 
forecast are of great relevance [36]. For this reason, it is expected that an 
ANN with a simple topology deployed in a FPGA would estimate the 
position and speed from BLDC motor signals with enough precision and 
low computational cost. 

With this approach, an ANN-based method with multilayer percep-
tron (MLP) topology is presented in this article, and a series of experi-
ments are fulfilled to determine its validity. To build the model, a FPGA- 
based test bench drives a loaded BLDC motor from standstill (in open 
loop) to variable speed operation (in closed loop) using a three-phase 
inverter controlled with pulse width modulated (PWM) signals. The 

terminal phase voltages of the motor are acquired with signal condi-
tioning circuitry based on amplifiers and filters, and A/D converters 
built in the FPGA board. For rotor position detection, the typical six 
steps of the electrical commutation sequence are considered, as well as 
six virtual steps assigned to phase transitions that provide 12 rotor states 
in total. For ANNs training, the Backpropagation algorithm is used to 
obtain an optimal set of network parameters. An external encoder pro-
vides reference data to label the estimations (hypotheses) in ANNs 
training and to compare the estimations with the reference in method 
validation and testing. In sensorless mode, experimental tests are 
intensively performed at specific speeds in a wide range of 125–1,500 
rpm. 

The remainder of this article is structured as follows. In Section 2, the 
test bench to conduct the experiments is explained, followed by the 
description of the specific designs for motor signal conditioning and 
motor driving. Then, in Section 3, a novel estimation method based on 
ANNs with MLP topologies is developed, and the ANNs learning process 
is analysed considering the operation of the motor. In Section 4, the 
effectiveness of the method is validated by experiments with reference 
data from a position sensor, and the results are evaluated and discussed 
in comparison to other sensorless methods from related research. 
Finally, the conclusions are drawn in Section 5. 

2. Experimental setup and data acquisition 

In this section, an overview of the test bench used in the experi-
mental phase is provided. The implementation of the motor signal 
conditioning and motor driving operations are analysed in detail as the 
main components to collect data for training and testing of the proposed 
method. 

2.1. Test bench 

The assessment of the method was carried out by conducting several 
experiments on a generic test bench that drove the motor and collected 
data. The test bench consisted of the processing hardware and learning 
software to support the test conditions of a real motor with an external 
load. Not only the test bench supported a Maxon EC 45 motor with the 
parameters shown in Table 1, but also delta and wye winding motors of 
different characteristics, such as voltage rating, load torque, and number 
of pole pairs. 

The schematic layout of the experimental setup is depicted in Fig. 1. 
The motor driver was composed of a three-phase inverter and condi-
tioning circuitry for amplification and filtering of motor voltages. Motor 
control and signal processing were relied on a Xilinx Spartan-6 FPGA 
and a real-time processor to generate PWM control signals, acquire 
conditioned motor voltages, and read encoder pulses. The reference 
positions were measured with a Kübler 2400 incremental encoder 
providing a resolution of 0.35 mechanical degrees with 1,024 pulses per 
revolution. Encoder data and motor voltages were sampled on separate 
A/D channels on the FPGA board. An illustration of the test bench is 
shown in Fig. 2. 

Table 1 
Parameters of the Maxon EC 45 motor.  

Description Parameter Value Unit 

Rated voltage VDC 12 V 
Rated power PW 30 W 
Phases p 3 – 
Pole pairs Kp 8 – 
Rated current I 1.96 A 
Rated torque T 53.2 mNm 
Phase resistance R 1.4 Ω 
Phase inductance L 0.56 mH 
Rotor inertia Ir 92.5 g⋅cm2  
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2.2. Motor signals conditioning 

The conditioning stage played a notable role in providing motor 
phase voltages within the appropriate ranges and with attenuated 
spurious components to be properly acquired by FPGA board A/D con-
verters. This conditioning was based on differential amplification and 
filtering of motor signals over a virtual neutral point, as discussed in 
detail below. 

The schematic layout of Fig. 1 includes a wye winding BLDC motor 
with a reference neutral point N. According to the mathematical model 
of a BLDC motor [37], the terminal phase voltages of three stator 
windings are given in matrix and reduced form as follows: 
⎡

⎣
VA
VB
VC

⎤

⎦=

⎡

⎣
RA 0 0
0 RB 0
0 0 RC

⎤

⎦∙

⎡

⎣
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⎤

⎦+
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⎤
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d
dt

⎡

⎣
IA
IB
IC

⎤

⎦+

⎡

⎣
EA
EB
EC

⎤

⎦

(1)  

VX = R∙IX +(L − M)∙
d
dt

IX +EX (2)  

where X is the motor phase (A, B, and C), R is the stator resistance 
(assumed to be similar for all windings), IX is the armature current, L and 
M are, respectively, the self-inductance and the mutual inductance 
(assumed both constant and similar for all windings), and EX is the 
trapezoidal-shaped BEMF. 

To perform phase voltage measurements with low commutation 
noise, a virtual neutral point S with three resistors in wye configuration 
was used. The conditioning circuit designed for each motor phase X is 
illustrated in Fig. 3. The common-mode noise at the virtual point was 
reduced with differential amplifiers of high common-mode rejection and 
low noise, such as the INA126 model with a gain of 5 V/V. The terminal 
phase voltages obtained with respect to the virtual point are: 

VXS = VXN +VNS = VX − VN +VN − VS = VX − VS (3) 

As the operation of the PWM-based three-phase inverter presented 
high frequency components, they were attenuated with two filters [38]: 
a restrictive low-pass filter (Ra,Ca) for frequencies <20 kHz and a low- 
pass Pi filter (Lb,Cb) for high-frequency spurious components from 100 
to 200 kHz. In the final stage of the circuit, a current limiting resistor and 
clamping Schottky diodes were included to protect the next stage of data 

Fig. 1. Schematic layout of the experimental test bench.  

Fig. 2. Test bench used in the experimental phase.  
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processing against overcurrent, undervoltage and overvoltage. Motors 
of different ratings, such as 12 or 24 V nominal voltage, were supported 
as the input conditioning supply voltage VDC was configured to that 
nominal limit. However, the output conditioning levels were adjusted to 
the VCC supply voltage of the input interface on the processing board, as 
a range of ± 5 V and 10 mA per analog input. After the conditioning 
stage, the high frequency components of the conditioned voltages VAF

XS 
were attenuated without any relevant influence on the dynamic per-
formance, such as slew rate and speed response. The acquisition of the 
conditioned voltages was carried out in the processing board with A/D 
converters of 16 bits and a sampling frequency of 100 kHz (period of 10 
μs). As an example, the actual conditioned voltages of phase A are shown 
in Fig. 4. 

2.3. Motor driving 

The main components of the motor driver were the commutation 
devices of the three-phase inverter and the generation of their gate 
commutation signals. The power transistors Q1 to Q6 of the inverter, 
such as the UC2950T half-bridge model, were switched on and off with 
PWM signals according to a six-step electrical sequence. This sequence 
excited only two of the three phases and the third phase remained 
floating at any instant in time [39], as presented in Table 2. The PWM 
signals were generated by a FPGA-based control board to switch the 

transistors with a fixed duty cycle (D = TON/TPWM) and a variable 
commutation period between phases to change the motor speed. As the 
commutation properties of the transistors (turn-on and turn-off times 
close to 200 ns) limited the PWM duty cycle, it was adjusted to the 
minimum commutation period of these devices through TON (time that 
the PWM signal remained at a high level). This strategy provided the 
flexibility to use motors of different nominal voltages by limiting the 
proportion of PWM duty cycle used, obtaining a driver for low noise 
operation at high speeds and controlled with PWM configurations 

Fig. 3. Stages of the signal conditioning circuit for each motor phase X.  

Fig. 4. Actual motor voltages for phase A at the input (VAN) and output (VAF
AS ) of the conditioning circuit.  

Table 2 
Six-step sequence of clockwise BLDC motor rotation and relation to rotor 
position.  

Sequence 
number 

Active 
transistors 

Active phases Rotor position 

High Low A B C Electrical 
degree 

Mechanical 
degree 

1 Q1 Q4 On On Off 0–60 (0–60)/Kp 

2 Q1 Q6 On Off On 60–120 (60–120)/Kp 

3 Q3 Q6 Off On On 120–180 (120–180)/Kp 

4 Q3 Q2 On On Off 180–240 (180–240)/Kp 

5 Q5 Q2 On Off On 240–300 (240–300)/Kp 

6 Q5 Q4 Off On On 300–360 (300–360)/Kp  
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adapted to the motor characteristics [40]. The driver was operated with 
a 20 kHz PWM frequency and 50% duty cycle after various evaluation 
tests. 

As a three-phase inverter was used to perform the commutation of 
the stator windings through the six-step sequence, at each step the motor 
phase had its upper or lower leg in a disconnected state to switch only 
two transistors at the same time [10]. This operation represented the 
basis to estimate six position steps in an electrical cycle, which are 
related to the mechanical cycle as follows: 

Tm = Kp∙Te (4)  

where Tm is the mechanical period, Te is the electrical period, and Kp is 
the number of rotor-pole pairs. 

Based on this operation, the starting of the motor from standstill was 
performed with an open-loop ramp-up model without rotor pre- 
alignment using the PWM signals for transistor switching. The motor 
was linearly accelerated to a reference speed, which simplified the 
starting and considerably avoided traditional reverse rotational prob-
lems [41]. It provided a stable starting alternative with high torque and 
low start-up time without the drawbacks of conventional techniques, 
such as reduced motor signal levels and signal-to-noise ratio at low 
speeds that often influence on BEMF detection [42]. Once the motor 
reached a speed close to 100 rpm, a closed-loop control was used with 
the encoder data as the reference position. 

3. Experimental method for position and speed estimation 

This section describes the proposed method for estimating position 
and speed using information from motor voltages only. It is based on 
MLP-ANN topologies which estimate the motor rotational angle as the 
main parameter and then obtains the motor speed. The proposal rep-
resents a generic estimation method without considering the motor 
model or the detailed analysis of its electrical signals. Obtaining the 
Virtual Sequence Numbers (VSN) is described first, as it is one of the 
basis of the method. Next, the estimation algorithm overview is 
explained to achieve a broad perspective of the proposal. Subsequently, 
the proposed MLP-ANN topologies and the process of ANNs training, 
validation, and testing are described in detail. 

3.1. Virtual sequence numbers 

In a BLDC motor, the position detection is related to the electrical 
rotor position and the commutation sequence number. Furthermore, in 
these motors, the number of poles limits the resolution of the rotor 
angle, so that only a certain number of rotor steps are possible and the 
position detection methods are limited by this characteristic. To facili-
tate the identification of the real rotational angle, the proposed method 
considered six virtual steps corresponding to the transitions between the 
consecutive electrical steps of the rotor that are shown in Table 2. In 
total, 12 rotor steps (6 real steps and 6 virtual steps) were provided in 
each electrical cycle, which were called VSN. Each of them represented 
an angular range per electrical cycle with two components (sine and 
cosine) and were identified by the angle projections on the unit circle, as 
presented in Table 3. The use of these components is a common 
approach to increase the ANNs performance for small angle variations 
when the input changes are significantly low [43]. 

VSNs contributed to reduce the influence of noise over ANNs training 
because input phase voltages were mapped to a discrete output VSN 
label. Each label represented an angular range rather than a continuous 
variable, such as the rotational angle, which is more prone to noise 
distortions. Furthermore, VSNs represented an increase in the number of 
outputs for ANNs training up to 96 labels (12 VSN multiplied by 8 pole 
pairs for the EC 45 motor) and the minimum measurable angle was from 
7.5 to 3.75 mechanical degrees. It was a simple way to increase the angle 
resolution because, according to Table 2, in a sequence transition, only 

two of the three phases changed in each sequence step. That condition 
for detecting a transition was considered easy to learn in ANNs, since the 
sign of two phases changed simultaneously and near the sign change the 
voltage levels were close to zero, which was similar to a zero-crossing 
detection (ZCD) operation. Using this approach, the voltage inputs 
from each training example were mapped to a sine–cosine pair as an 
output label to identify the real position components (obtained from 
encoder reference positions) that the ANN algorithm should learn. In 
each VSN, the mean value of the sine and cosine ranges was used as a 
label to reduce the detection error by half. As an example, in the VSN 2 
corresponding to an electrical transition, the sine and cosine compo-
nents were 0.098 and 0.995, respectively, and the mechanical angles, 
read from the encoder and located in the same range of the components, 
were assigned the same mean value for training. 

The signal processing circuit acquired the encoder reference posi-
tions and assigned those positions to VSNs taking into account the cor-
responding angle ranges considered in Table 3, which depended on Kp 
for a specific motor. Fig. 5 shows the graphs of three motor voltages after 
signal conditioning (VAF

AS ,VAF
BS , and VAF

CS ) and their relationship to 96 VSN 
labels per mechanical cycle (12 VSN per electrical cycle) for the EC 45 
motor at a speed of 1,500 rpm. These graphs illustrate the mapping 
between voltage levels and rotor position that the ANNs performed after 
training to estimate position and speed. In the first electrical cycle of 
Fig. 5, it is observed that odd VSNs correspond to conventional sequence 
numbers for commutating inverter transistors with one inactive phase 
and two active phases, which provide stable voltages. However, even 
VSNs correspond to electrical transitions of phase voltages with one 
phase active and two phases changing sign, equivalent to a double zero- 
crossing operation. 

As an illustrative example of the VSN mapping process for training, 
the position steps VSN 7 and VSN 12 of the first electrical cycle and the 
phase voltage levels for each step are highlighted in Fig. 5. For VSN 7, 
the points are a1 ≈ -4 V and b1 ≈ 4 V (A and B are the active phases), and 
c1 ≈ 0 V (C is the inactive phase). For VSN 12, the points are b2 ≈ -4 V (B 
is the active phase), while a2 and c2 are for phases in transition (A and C) 
whose voltages correspond to level changes, similar to a double zero- 
crossing operation (change from 0 V to ±4 V, and vice versa). These 
values are representative of the input data (voltage levels) and the 
output labelling data (VSNs) that the ANNs used in their learning 

Table 3 
Equivalence between VSNs and mechanical rotor positions.  

VSN Electrical 
step with 
sequence 
number or 
electrical 
transition 

Rotor Position (mechanical degree) 

Generic 
Angle 

Position in 1st electrical cycle for Maxon EC 
45 motor (KP = 8) 

Angle Sine 
component 

Cosine 
component 

1 1 (0–30)/Kp 0–3.75 0–0.065 1–0.998 
2 1 → 2 (30–60)/Kp 3.75–7.5 0.065–0.131 0.998–0.991 
3 2 (60–90)/Kp 7.5–11.25 0.131–0.195 0.991–0.981 
4 2 → 3 (90–120)/ 

Kp 

11.25–15 0.195–0.259 0.981–0.966 

5 3 (120–150)/ 
Kp 

15–18.75 0.259–0.321 0.966–0.947 

6 3 → 4 (150–180)/ 
Kp 

18.75–22.5 0.321–0.383 0.947–0.924 

7 4 (180–210)/ 
Kp 

22.5–26.25 0.321–0.383 0.947–0.924 

8 4 → 5 (210–240)/ 
Kp 

26.25–30 0.383–0.5 0.924–0.866 

9 5 (240–270)/ 
Kp 

30–33.75 0.5–0.556 0.866–0.831 

10 5 → 6 (270–300)/ 
Kp 

33.75–37.5 0.556–0.609 0.831–0.793 

11 6 (300–330)/ 
Kp 

37.5–41.25 0.609–0.659 0.793–0.752 

12 6 → 1 (330–360)/ 
Kp 

41.25–45 0.659–0.707 0.752–0.707  
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process at each sequence step to provide the position estimation. 

3.2. ANN-based estimation algorithm 

The proposed method was developed with multilayer ANNs. The 
fundamental part of the method estimated the rotor position and the 
rotor speed estimation was based on the position results, as shown in 
Fig. 6. When selecting the type and topology of ANNs, the simplicity and 
the use of low computational resources were considered as the main 
characteristics to enable their implementation in low-cost hardware 
devices for online training or on a computer for offline training. An MLP 
topology with fully connected layers was selected instead of more 
complex architectures, such as convolutional or recurrent ANNs, which 
are typically used in image-based methods for machine diagnosis that 
requires more computing resources [44]. The selected topology allowed 
for prototyping and implementation in commercial embedded devices 
such as FPGAs. 

The MLP topology was implemented with three layers. In the input 
layer, the number of nodes was related to the input variables to be 
processed (motor voltages and acquisition time), while in the output 
layer the number of nodes depended on the hypothesis function. In the 
hidden layer, several structures with different number of nodes were 

independently developed and trained to select the topology with the 
maximum success rate in the validation dataset. The tan-sigmoid acti-
vation function g1(x) = − 1+2/(1 + exp( − 2∙x).) was used in the hidden 
layer nodes to establish nonlinear relations among layer inputs and 
outputs with a limited range to ±1. However, the linear activation 
function g2(x) = x was selected for the output layer nodes to allow un-
limited values. It was admitted that a network with tan-sigmoid hidden 
neurons and linear output neurons can adapt quite well to multidi-
mensional mapping problems when fed with consistent data and the 
hidden layer has enough neurons [34]. 

3.2.1. Position estimation ANN 
The position estimation MLP-ANN topology consisted of 10 input 

nodes, five hidden nodes, and two output nodes, as illustrated in Fig. 7. 
The ANN inputs provided information on the three-phase motor signals 
in each acquisition time slot and their evolution over time. The inputs 
were the terminal phase voltages at the current acquisition time instant 
(VAF

XS (t)), the terminal phase voltages at the next acquisition time instant 
(VAF

XS (t+ Δt)), and the corresponding acquisition time slot as time dif-
ference (Δt). To obtain additional information on voltage changes, such 
as the sign of the signals, a set of three voltMul features was synthesised 
as the product of the terminal phase voltages in the current and previous 

Fig. 5. Three-phase motor voltage levels after signal conditioning (VAF
XS ) related to VSN labels (drawn in blue circles) in each electrical cycle (EC) and mechanical 

rotor positions for Maxon EC 45 motor (Kp = 8) at a speed of 1,500 rpm. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 6. Block diagram of the ANN-based estimation algorithm.  
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time instants (voltMulA, voltMulB, and voltMulC), as shown in Fig. 6. The 
new position features were calculated as follows: 

voltMultX = VAF
XS (t)∙V

AF
XS(t + Δt) (5)  

where X is the motor phase (A, B, and C) and Δt is the time slot in which 
the product operation is carried out to obtain the feature. 

The input to output mapping was provided as the sine and cosine 
components of the estimated rotational angle (β̂) rather than the esti-
mated angle itself. Finally, the estimated position was the result of the 
arctangent function, which also avoided the problem of inconsistent 
values such as those greater than one. 

3.2.2. Speed estimation ANN 
The speed estimation was also performed with a three-layer MLP- 

ANN topology. However, it could have been implemented as a simple 
conventional observer based on the cumulative sum of the number of 
mechanical rotor cycles per unit time. Based solely on this simple 
mathematical algorithm, the resolution would have depended on the 
position estimation errors and the correct identification of the rotor 
cycle. In that case, the cycle detection would have been more sensitive to 
position deviations as ANNs perform additional data filtering tasks. In 
the proposed ANN, the speed resolution was also based on position er-
rors, but the identification of the cycle over time only used the features 
synthesised in the ANN training. 

The speed estimation was developed with two stages, as shown in 
Fig. 6. The first stage calculated a set of speedRatio features as a function 

Fig. 7. Position estimation ANN with a three-layer MLP topology.  

Fig. 8. Speed estimation ANN with a three-layer MLP topology.  
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of the rotor positions and their timestamps, and the second stage 
implemented the ANN taking the speed ratio features as input, as 
depicted in Fig. 8. Two speedRatio features were obtained based on po-
sition differentials and their associated timestamps. The values of the 
speedRatio1 feature were calculated with the difference of each position 
sample and the last sample in an acquisition window. It provided fea-
tures in incrementally sized time slots to detect instantaneous speed 
variations and unexpected deviations (outliers). The values of the spee-
dRatio2 feature considered position samples in consecutive rotor cycles 
with the same VSN, which provided an observer of the position changes 
during complete cycles to detect periodic variations in speed. The speed 
ratio features are given as follows: 

speedRatiop1 =
β̂n − β̂n− p
tn − tn− p

(6)  

speedRatioq2 =
β̂
q
k − β̂

q
k− 1

tqk − tqk− 1
(7)  

where Δt = ti -ti-j is a time slot with ti as the acquisition timestamp of the 
position sample i that corresponds to the rotor position β̂ i, n is the size of 
the acquisition window, p is the index of a position sample in the win-
dow (p = 1 to n-1), k and k-1 are the indexes of position samples with the 
same VSN of value q (q = 1–12) in two consecutive rotor cycles. 

Using this approach, the values of the speedRatio1 feature were 
collected with a window of size n = 10 that provided nine speed ratio 
values. For the speedRatio2 feature, 12 speed ratio values were obtained 
since each VSN provided a rotor position and, consequently, its associ-
ated speed ratio. Therefore, 21 nodes were used in the input layer. The 
hidden and output layers were implemented with ten nodes and one 
node, respectively, after various evaluation tests. 

3.3. Motor operation and ANNs learning 

The measurement of BLDC motor and encoder signals was used for 
ANNs training and further testing. The learning process consisted of 
several stages and required operation of the motor in sensor-based and 
sensorless modes, as illustrated in Fig. 9. 

In the first stage, the motor was started from standstill with an open- 
loop ramp-up control to develop speed. It provided a simple start-up 
strategy over conventional BEMF based techniques, which are more 
typical but not applicable for self-control from standstill because BEMF 
signals are very low in this state. Sensor-based control was then enabled 
at a speed close to 125 rpm and the encoder signal was used as the 
reference position to control the drive. At this stage, during variable 
speed operation at 125–1,500 rpm, the motor phase voltages and 

encoder data were measured and stored as training examples for the 
position estimation ANN. Based on those examples and the position 
estimations, the speed ratio features were obtained to train the speed 
estimation ANN. In the last stage of the process, the motor was driving in 
sensorless mode to evaluate the performance of the proposed method 
with respect to tracking the encoder reference signal. 

As the main operation of the proposed method, the training of the 
position estimation ANN was performed with the Backpropagation al-
gorithm once m examples (x(i), y(i)) were acquired, where i = 1 to m, 
x = x(i) is the input vector of motor phase voltages and timestamps, and 
y = y(i) is the output vector of VSN labels associated to encoder posi-
tions. The weights of each ANN node were randomly initialized and the 
acquired motor data x was used as ANN input data (a(1) = x). Next, in 
the forward propagation phase of the algorithm, the vectors of the 
remaining neurons a(j) were calculated, where j = 2 (hidden layer) and j 
= 3 (output layer). The ANN hypothesis output vector hΘ(x) was 
calculated as expressed below: 

hΘ(x) = a(3) = g2
(
Θ(2)∙a(2) ) (8)  

a(2) = g1
(
Θ(1)∙a(1)) (9)  

where g1 is the tan-sigmoid activation function for the hidden layer, g2 is 
the linear activation function for the output layer, Θ(1) is the weight 
matrix to control the mapping of the input layer to the hidden layer, and 
Θ(2) is the weight matrix to control the mapping of the hidden layer to 
the output layer. 

In the back propagation phase of the algorithm, the cost errors δ(j)

were obtained and the cost was minimised with an optimal set of pa-
rameters Θ(j), considered as the network weights. For the output layer (j 
= 3), the error vector was the difference of the actual results and the 
correct output. However, for the hidden layer (j = 2), the error vector 
was calculated with the product of the output layer error and the hidden- 
output weight matrix, and the derivative of the activation function for 
the hidden layer (g1’) applied to the input-hidden transform: 

δ(3) = a(3) − y (10)  

δ(2) = ((Θ(2))
T∙δ(3))*g1’

(
Θ(1)∙a(1)) (11)  

where the operation “*” represents an element-wise multiplication of 
vectors and matrices, and the superscript “T” indicates a transposed 
matrix. 

The procedures of ANN training, validation, and testing were per-
formed on measurements of triangle and up-down variable motor speeds 
over the range of 125–1,500 rpm, which covered the main motor 

Fig. 9. Process of motor operation and data measurement for ANNs learning.  
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speed–torque operating area, as described in Table 4. The dataset 
measurements were collected at a sampling rate of 100 kHz and rear-
ranged randomly prior to allocation to a specific subset. It provided 
symmetry breaking and generalization error reduction that substantially 
avoided the influence of overfitting (high variance) and underfitting 
(high bias) problems. In this work, the total number of ground truth 
measured data for training, validation, and testing was equal to 
343,500, which may contain outliers and missing values than may skew 
the results. Because proper data division is relevant as the results may be 
biased depending on how the data is split, the measured values were 
divided into fractions. The data division was adopted as a 40% fraction 
of the ground truth data for training, a 10% fraction for cross-validation 
to evaluate ANNs generalization, and a 50% fraction for testing to 
provide an independent measure of ANNs performance after training. It 
should be noted that the training and cross-validation sets were selected 
small enough to reduce the processing load of the training process with 
an adequate learning rate, allowing the possibility to train offline on the 
computer or online on the FPGA board. 

After training and testing the ANNs, the motor operation in sensor-
less mode started with the ANNs data and without the support of the 
encoder data. In the experimental tests over the full speed range, the 
position and speed results of the ANNs estimations were compared with 
the encoder data, as analysed in the next section. 

4. Experimental results and discussion 

The experiments were carried out to verify the performance of the 
position and speed estimations with the proposed method. The experi-
mental test bench is shown in Figs. 1 and 2, in which the Maxon EC 45 
motor was used (see parameters in Table 1) with a medium load torque 
of 35 mNm coupled to the shaft. The performance was analysed with the 
loaded BLDC motor and a shaft encoder in the speed range of 125–1,500 
rpm. 

4.1. Evaluation guidelines of estimation results 

To evaluate the performance of the proposed method, not only the 
success of the training was considered, but also the criteria for a correct 
assessment of the estimation results with respect to the real target 
values. This was carried out with fractional parts with random ordering 
of ground truth data for training, validation and test sets, and the se-
lection among other fitting models, such as Support Vector Machines, of 

a sufficiently simple and flexible learning topology. Likewise, as the 
statistical criteria played a relevant role in the evaluation, the F-score 
and the mean absolute error (MAE) were used as metrics. The F-score is 
the harmonic mean of precision and recall, and was used as a combined 
evaluation metric to assess average rates rather than the accuracy. 
However, the accuracy also provided an additional ponderation as 
evaluates the ratio of true cases (estimated correctly) and the total 
number of examples. The MAE quantifies the difference between the 
paired estimated and target values in a large set of examples, and was 
intended to minimise with an optimal set of ANN parameters Θ(j) as 
network weights. Their formulas are reminded next: 

F − score = 2∙
P∙R

P + R
(12)  

where P is the precision as the ratio of true positives and the number of 
predicted positive cases (true and false positives), and R is the recall as 
the ratio of true positives and the number of actual positive cases (true 
positives and false negatives). 

MAE =
1
n
∑n

i=1
|ŷi − yi| (13)  

where n is the total number of examples, and ŷ and y are the estimated 
and target vectors, respectively. In the case of the rotor position as the 
main estimation result of the proposed method, y corresponds to the 
position reference from the encoder and ŷ have two components (sine 
and cosine) to obtain the estimated position as follows: 

β̂ = arctan
(

sin(β̂)
cos(β̂)

)

(14)  

4.2. Performance of VSN estimation 

The detection of the rotor positions was associated with the esti-
mation of VSNs, so its performance evaluation was considered a key 
factor. As described in Table 4, the ANNs were trained, validated, and 
tested with two categories of datasets (triangle and up-down) on 
343,500 motor measurements. However, the experimental testing of 
ANNs was performed on more than 1.75 million motor measurements 
(over 30,000 rotor mechanical cycles) at low, medium, high, and very 
high fixed speeds over the range of 125–1,500 rpm, as shown in Table 5. 

The performance of the VSN estimation was evaluated as the ratio 
between the unknown states (no match with a known state), the suc-
cessful states, and the failed states related to the actual position of the 
rotor. Fig. 10 shows the accuracy of 32 speed tests over the full range 
and indicates that 92% are successful states (true positives), 7.5% are 
unknown (false negatives and false positives), and 0.5% are erroneous 
(true negatives). The rate of unknown states increased significantly at 
low speeds (about 30%) due to the difficulty in BLDC motors to detect 
the rotor position near standstill. The proposed method significantly 
improved the performance when the motor speed was higher than 175 
rpm due to the drastic reduction of unknown states, although the 

Table 4 
Datasets for ANNs training, validation, and testing in the full speed range.  

Category 
of dataset 

Motor 
speed 
range 
(rpm) 

Description Motor 
measurements 
(x(i),y(i))

Rotor 
mechanical 
cycles 

Triangle 85–950 The speed 
increases in the 
range and then 
falls into a 
triangle shape. 
The speed varies 
in steps of 1–10 
rpm, and the 
frequency of 
speed variation 
changes. 

159,350 ≈ 3,187 

Up–down 85–1,500 The speed 
increases and falls 
alternately within 
the full range. 
Steps: 85 → 250 
→ 125 → 600 → 
400 → 950 → 750 
→ 1,500 

184,150 ≈ 3,683  

Table 5 
Dataset for ANNs experimental testing at specific speeds over the full range.  

Category of 
dataset 

Motor speed value 
(rpm) 

Motor 
measurements (x(i),

y(i))

Rotor 
mechanical 
cycles 

Low speed 125, 175, 200, 225, 250 157,630 ≈ 2,866 
Medium 

speed 
325, 400, 475, 540, 
600, 650, 700 

567,215 ≈ 10,313 

High speed 725, 750, 800, 850, 
900, 950 

793,430 ≈ 14,426 

Very high 
speed 

975, 1,000, 1,050, 
1,100, 1,150, 1,200, 
1,300, 1,400, 1,500 

237,820 ≈ 4,324  
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estimation between 125 and 175 rpm was obtained with a moderate 
error. 

As noted, the performance of the estimation remained high in the full 
speed range, but decreased at very low speeds. The operation close to 
standstill was not considered in the present work and was handled with 
an open-loop ramp model without rotor pre-alignment using PWM 
control, as explained in Section 2. To cope with these limitations, a 
different learning procedure may be specifically applied in these sensi-
tive areas. Some relevant works are described in the literature for esti-
mating the rotor position from standstill to a speed below 100 rpm. 
Examples of methods that consider those measurements are the Second- 
order generated Integrator [45], the Indirect High-frequency Signal In-
jection [46], and those based on the effect of magnetic saturation [47]. 

The performance measurements of the proposed ANN model for VSN 
multiclass classification were provided in the dataset described above, 
which was larger than the cross-validation set and was highly focused on 
specific speeds. The use of large datasets allowed the performance to be 
evaluated in detail and helped to verify the initial aim of reducing 
computational resources with simple ANN topologies and small training 
sets. The evaluation for each speed under test was determined with the 
values of the parameters based on the confusion matrix, such as accu-
racy, precision, recall and, mainly, F-score. However, only the overall 
values of those parameters were provided in this analysis to simplify, as 
they were all very similar for each speed. The F-score was preferentially 
considered as the combined evaluation metric, since the cost of false 
positives was similar to that of false negatives and a correct association 
of VSN labels with examples was more important. The results were 
0.961 for the F-score and, for reference only, 0.925 for the accuracy, 
supporting that the classifier was extremely precise and accurate, and 
omitted a relatively small number of examples. 

4.3. Performance of position and speed estimation 

As mentioned, the core of the developed estimator was the position 
ANN-based algorithm and the performance of the method was based on 
the ability of the ANNs to estimate the VSNs. As illustrated in Fig. 10, the 
performance of VSN estimation was validated over the full speed range 
of 125–1,500 rpm. Furthermore, in this range, the tracking of the 
encoder measured data was compared with the estimations to obtain the 
MAE of position and speed. 

The performance results at different motor speeds are summarized in 
Table 6. The results in bold type show a small position MAE below 0.8 
electrical degrees and a moderately high relative speed error of 5% 
(MAE below 22 rpm) over the full speed range. 

Performance results were obtained after detailed graphing and nu-
merical analysis for each motor speed. Because the results were very 
similar for the speeds under test, only the analyses for 175 rpm (low 
speed, near to the starting) are included in Figs. 11 and 12, and the 
results for 850 rpm (high speed) are illustrated in Figs. 13 and 14. The 
position graphs only include one mechanical cycle (0–360◦) to evaluate 
in detail the tracking of the encoder reference during a cycle and at the 
cycle transition. However, the speed graphs cover a large number of 
motor voltage measurement samples (three-phase voltages per sample) 
to validate the steady-state performance over various mechanical cycles. 
Each graph includes a zoom view to analyse the instantaneous errors of 
the estimated position and speed with respect to the encoder reference, 
which were used to obtain the MAE results for a specific speed test. 
Position overshoot or undershoot were not relevant near cycle transi-
tions, and there was a slight fluctuation around reference in the position 
and speed graphs, which remains stable within a tolerance margin at 
stationary. 

Fig. 10. Performance of VSN estimation related to successful, unknown, and erroneous motor position states in the speed range of 125–1,500 rpm.  

Table 6 
Performance measurements of experimental position and speed tests.  

Motor Speed (rpm) Speed category Position MAE (mech. degree) Position MAE (electrical degree) Speed MAE (rpm) Relative Speed Error (%) 

125 Low  6.1  0.76 5.4 4.3 
175 Low  5.7  0.71 7.3 4.2 
325 Medium  6.2  0.77 17.9 5.5 
475 Medium  6.4  0.8 12.8 2.7 
600 Medium  6.4  0.8 22.8 3.8 
725 High  6.3  0.79 32.6 4.5 
850–1,500 High to very high (10 speed values)  ≈ 6.5  ≈ 0.8 21.2–37.5 ≈ 2.5 
125–1,500 Low to very high (Full range)  < 6.5 mech. deg.  < 0.8 elect. deg. < 22 rpm < 5%  
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4.4. Comparison to related research 

The comparison of the proposed method with related research works 
is discussed in detail below. The position and speed errors obtained by 
conventional and advanced methods are considered to compare their 
performance with respect to the method proposed in the present work, 
taking into account similar test conditions as far as possible. The related 
research works considered in the study are included in Tables 7 and 8. In 
these tables, “N/A” means Not Available and “-” indicates that a specific 
data is not described in the associated reference. 

Firstly, the comparison of the position estimation performance of the 
proposed method with respect to the conventional methods is analysed. 
It is found that although the present work obtains an absolute position 
error of 0.8◦ (electrical degree) in the full range of 125–1,500 rpm, some 
of the most relevant conventional methods obtain errors of 60◦ [11,28], 
30◦ [9,11,12,48,49], 3◦ [50], 3.5◦ [51], 10◦ [51], 5◦ [51], 10◦ [29], and 
3.5◦ [52]. These data show that the proposed method provides an 
average error reduction of 95.1% and an error reduction of 73.3% with 
respect to the best conventional method. It is relevant to analyse some 
characteristics of the conventional methods that contribute to their 
limited performance:  

• The more conventional sensorless method [11,28] obtains a position 
error of 60◦ because the voltage vectors used in the PWM inverter are 
only restricted to the six basic nonzero states of the switches. In the 
proposed method, not only are the six basic states considered, but 
phase transitions are also included in the VSNs to provide more states 
to train the ANNs.  

• The methods based on BEMF signals and some improvements 
[9,48,49] obtain a position error of 30◦ in the transient state since the 
estimated commutation points are shifted with this value at the zero- 
crossing. Furthermore, an improvement that compensates for the 
ZCD error of the phase voltage achieves a position error of 3◦ [50]. 
The proposed method improves these results, as the ANNs act as a 
data filter to remove outliers after phase commutation that could 
influence on the position detection. To improve the BEMF-based 
position detection, the SMO method [29] is usually applied to 
remove multi-order harmonics from the BEMF signals. To limit the 
influence of harmonics in the proposed method, the signal processing 
is carried out with amplifiers and filters in the conditioning stage. 

Secondly, the comparison of the position estimation performance of 
the proposed method (0.8◦ error) with respect to the advanced methods 
is analysed. Some of the most relevant advanced methods obtain errors 

Fig. 11. Analysis of position estimation error when the ANN-based method 
tracks the encoder reference for a motor speed of 175 rpm. 

Fig. 12. Analysis of speed estimation error when the ANN-based method tracks 
the encoder reference for a motor speed of 175 rpm. 

Fig. 13. Analysis of position estimation error when the ANN-based method 
tracks the encoder reference for a motor speed of 850 rpm. 

Fig. 14. Analysis of speed estimation error when the ANN-based method tracks 
the encoder reference for a motor speed of 850 rpm. 
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of 1◦ [54,55], 1.8◦ [56], 0.95◦ [56], a range of 1.25◦ to 3.75◦ [38], 2.5◦

[33], and a range of 3.5◦ to 8.3◦ [34]. These data show that the proposed 
method provides an average error reduction of 67.2% and an error 
reduction of 20% with respect to the best advanced method. Although 
some of the advanced methods have a similar performance to that 
proposed, their design is more complex and requires more computa-
tional resources as explained below:  

• The Smoothing Filter and EKF algorithms [56] obtain position errors 
smaller than 2◦ when considering the covariance matrices in the 
estimation, which means using hardware with a relatively high 
computing capacity to solve the operations of sum and products 

Table 7 
Comparison performance of the present work to the related research.  

Ref. Method Position Error 
(electrical 
degree) 

Speed 
Error 
(rpm) 

Test Conditions  

Present work < 0.8◦ (6.5◦

mech.) 
< 22 
rpm 
(5%) 

Experimental 
setup: 16-pole 
motor, speed 
125–1,500 rpm, 
medium rated load 
35 mNm. 

[11,28] Conventional 
method 

60◦ – Typical setup: 
PWM inverter 
restricted to six 
non-zero states of 
the switches. 

[9,12] BEMF ZCD: 
Typical 

30◦ ~5 rpm 
(0.16%) 

Simulation: 6- 
pole/8-pole motor, 
speed 3,000 rpm, 
rated load 2.1 Nm 
(in [9]). 

[48] BEMF ZCD: 
Improvement 
(inverter PWM 
duty adjusted to 
speed, wide 
speed range) 

30◦ – Experimental 
setup: 5-pole 
motor, speed 
200–3,000 rpm, 
rated load 0.18 
Nm. 

[49] BEMF ZCD: 
Improvement 
(BEMF observer, 
zero-crossing 
detection not 
required) 

30◦ < 5 rpm 
(0.01%- 
0.33%) 

Simulation: 4-pole 
motor, speed 
20–1,500 rpm, 
zero to rated load 
1.5 Nm. 

[50] BEMF ZCD: 
Improvement 
(two-stage error 
compensation of 
line-voltages 
zero-crossing) 

3◦ – Experimental 
setup: 6-pole 
motor, speed 
5,000–10,000 rpm, 
load 15 mNm. 

[11] Current variation 
with the 
magnetic 
saturation of the 
stator core 

30◦ – Simulation (aimed 
to initial position 
from standstill): 8- 
pole motor, speed 
7,200 rpm, load N/ 
A. 

[51] BEMF Integration 3.6◦

(simulation) 
3.5◦

(experimental) 

– Setup: 4-pole 
motor, speed 
3,000 rpm 
(simulation) and 
1,500 rpm 
(experimental), 
medium rated load 
55 mNm. 

BEMF Third 
Harmonic 

3.6◦

(simulation) 
10◦

(experimental) 

– 

Terminal Voltage 
Sensing 

3.6◦

(simulation) 
5◦

(experimental) 

– 

[29] SMO: Typical 10◦ < 80 
rpm 

Experimental 
setup: 6-pole 
motor, speed 
900–3,000 rpm, 
load 25 mNm. 

[29] SMO: 
Improvement 
(Adaptive) 

10◦ < 30 
rpm 

[52] SMO: 
Improvement 
(2nd Order 
Integrator) 

< 3.5◦ – Experimental 
setup: 10-pole 
motor, speed 
90–1,200 rpm, 
20–80% rated load 
(N/A). 

[53] SMO: 
Improvement 
(2nd Order 
Integrator and 
Tracking 
Differentiator) 

1.8◦ 180 rpm 
(0.85%) 

Experimental 
setup: 2-pole 
motor, high speed 
21,000 rpm, no 
load. 

[54,55] Flux-Linkage 
function 

< 1.75◦

(20–100 rpm)  
< 1◦

– Experimental 
setup: 4-pole 
motor, speed  

Table 7 (continued ) 

Ref. Method Position Error 
(electrical 
degree) 

Speed 
Error 
(rpm) 

Test Conditions 

(100–600/900 
rpm) 

20–600/900 rpm, 
load range 0.5–3.2 
Nm.  

Table 8 
Comparison performance of the present work to the related research 
(Continuation).  

Ref. Method Position Error 
(electrical 
degree) 

Speed 
Error 
(rpm) 

Test Conditions  

Present work < 0.8◦ (6.5◦

mech.) 
< 22 
rpm 
(5%) 

Experimental setup: 
16-pole motor, speed 
125–1,500 rpm, 
medium rated load 35 
mNm. 

[56] EKF algorithm 1.8◦ ~15 
rpm 

Simulation: 4-pole 
motor, speed 3,700 
rpm, rated load 0.89 
Nm 

2◦ ~17 
rpm 

Simulation: 4-pole 
motor, speed 3,825 
rpm, medium rated 
load 0.45 Nm. 

[56] Smoothing Filter 
algorithm 

0.95◦ ~10 
rpm 

Simulation: 4-pole 
motor, speed 3,700 
rpm, rated load 0.89 
Nm. 

1◦ ~12 
rpm 

Simulation: 4-pole 
motor, speed 3,825 
rpm, load 0.45 Nm. 

[57] Virtual Hall 
Signals with Low- 
Pass Filters and 
Phase Shifters 
elimination 

3.5◦

(simulation) 
– Simulation and 

experimental setup: 
2-pole motor, high 
speed 10,000 and 
15,000 rpm, medium 
rated load. 

4◦

(experimental) 
– 

[38] Derivative of the 
Terminal Phase 
Voltages 

1.25◦–3.75◦ ~3 rpm Experimental setup: 
16-pole motor, speed 
5–1,500 rpm, no load. 

1.25◦–1.9◦ ~1 rpm Experimental setup: 
16-pole motor, speed 
5–150 rpm, rated load 
53 mNm. 

[33] Double ANN 
topology (current 
and BEMF 
models) 

2.5◦ – Experimental setup: 
speed 800 rpm, load 
0.5 Nm. 

[34] Feed-forward 
ANN topology 

8.3◦ (low speed) 
3.5◦, 4.9◦

(medium 
speeds) 
12.8◦ , 18.9◦

(high speeds) 

– Experimental setup: 
8-pole motor, low 
speed (1,000 rpm), 
medium speeds 
(2,000 rpm, 4000 
rpm), high speeds 
(6,000 rpm, 8,000 
rpm), load 50 Nm.  
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efficiently. The proposed method uses some of the simplest ANN 
training algorithms, such as the Backpropagation algorithm, to 
facilitate implementation in hardware with computational 
constraints.  

• The Flux-Linkage function [54,55] obtains a position error of 1◦ in a 
range relatively far from standstill, but the function is calculated by 
integrating the motor voltage equation over an extended period of 
time. It requires a relative great amount of memory and specific 
computational resources to perform the integration operations (sums 
and products), which are generally performed with mathematical 
coprocessors that are not available in low-cost commercial hard-
ware. The ANN algorithms used in the proposed method are trained 
with a reduced number of examples to minimise the memory usage, 
but a conditioning stage is required to obtain motor data with a low 
amount of spurious components. 

Thirdly, the comparison of the speed estimation performance of the 
proposed method (22 rpm error in the full range) with respect to the 
conventional methods is analysed taking into account only the related 
research that provides numerical data of the speed errors. Some of the 
most relevant conventional methods are the BEMF Zero-crossing 
detection with a typical implementation and an improvement with a 
BEMF observer that obtains speed errors of 5 rpm [9,12,49], the SMO 
that obtains a speed error of 80 rpm with a typical implementation [29], 
and the adaptive SMO that obtains an error of 30 rpm [29]. These data 
show that the proposed method provides an average error reduction of 
26.7% and with respect to the best conventional method, an error 
increment of 340%. 

Finally, the comparison of the speed estimation performance of the 
proposed method with respect to the advanced methods is analysed, 
and, as indicated previously, only the related research that provide 
numerical data are taken into account. Some of the most relevant 
advanced methods are the EKF algorithm that obtains a speed error of 
15 rpm [56], the Smoothing Filter algorithm that obtains an error of 10 
rpm [56], and the Derivative of the Terminal Phase Voltages that obtains 
an error between 1 rpm and 3 rpm [38]. These data show that the 
proposed method provides an average error increment of 144.4% and 
with respect to the best advanced method, an error increment of 1000%. 
It is relevant to analyse some characteristics of the advanced methods 
with respect to the present work:  

• The Derivative of the Terminal Phase Voltages [38] obtains a speed 
error <3 rpm. Its performance is based on the implementation of 
algorithms hardcoded with specific hardware and embedded soft-
ware, such as conditioning stages for signal amplification and deri-
vation, and ghost-spike filters for derivation pulses. The 
disadvantage of this design is that the effort to implement hardware 
for in-circuit processing is greater than the required in the proposed 
method to deploy simple ANN algorithms in commercial devices 
such as FPGAs.  

• Other methods that use ANNs, such as a double ANN topology [33] 
and feed-forward topology [34], do not provide numerical results of 
speed errors, as they are usually aimed to estimate position. Their 
position errors are between 2.5◦ and 8.3◦ in the equivalent range of 
low and high speeds, which represents an average error increment of 
69.8% regarding the proposed method. If these results were extrap-
olated to the speed estimation, their speed error would be hypo-
thetically greater than that obtained in the present work. 

The comparison of the present work with other methods has limi-
tations related to the test conditions. As far as possible, similar test 
conditions based on the proposed method are considered, such as speed 
ranges close to 125–1,500 rpm (far from standstill) and results from 
experimental setups rather than computer simulations. Another detail to 
consider is the number of poles of the motors used in the tests, which 
have at least four poles and motors with fewer poles are usually for 

speeds outside the target range. For reference only, Tables 7 and 8 
include two methods tested on 2-pole motors for speeds above 10,000 
rpm [53,57], which also obtain greater position errors than in the pro-
posed method. 

In summary, the proposed method significantly improves the 
average performance of the position estimation over conventional and 
advanced methods, surpassing even the most remarkable methods 
analysed in each category. Furthermore, the proposed method achieves 
a slightly better average performance of the speed estimation over 
conventional methods, but obtains a worse overall performance of the 
speed estimation over the advanced ones. These results show that a 
possible refinement of the method can be considered in the speed esti-
mation based on the methods discussed above, such as the BEMF 
observer that obtains a significant reduction of the error to 5 rpm [49] 
with moderate complexity to be applied in precision and critical appli-
cations. If the BEMF observer method was considered as the basis for 
improving the proposed method, the motor BEMF signals should be 
acquired to feed the inputs of the speed estimation ANN. 

5. Conclusion 

In this article, a new sensorless method is proposed for position and 
speed estimation of BLDC motors using only the terminal phase voltages. 
The method innovates in considering phase transitions as virtual 
extended rotor steps to improve the rotational angle resolution in ANN 
training, uses a multilayer perceptron-based ANN topology with a non- 
complex training algorithm that requires low computational re-
quirements such as memory and processing capacity, allowing it to be 
implemented in a low-cost FPGA, and only needs elemental signal pro-
cessing based on amplification and filtering to attenuate spurious and 
harmonic components from motor signals, enabling feature synthesis 
with high signal to noise ratio. Regarding related research works, the 
results show the following:  

• Compared to conventional methods such as the BEMF Zero-crossing 
detection and improvements based on BEMF observers, the Terminal 
Voltage Sensing, and the SMO, the proposed method provides an 
average error reduction of 95.1% for the position estimation, and an 
error reduction of 73.3% with respect to the best conventional 
method. In addition, for the speed estimation, it obtains an average 
error reduction of 26.7%, but the error increases by 340% regarding 
the best conventional method. 

• Compared to advanced methods such as the Derivative of the Ter-
minal Phase Voltages, the EKF algorithm, the Smoothing algorithm, 
and algorithms with similar ANN topologies, the proposed method 
provides an average error reduction of 67.2% for the position esti-
mation, and an error reduction of 20% with respect to the best 
advanced method. In addition, for the speed estimation, it obtains an 
average error increment of 144.4% and an error increment of 1000% 
regarding the best advanced method. 

In conclusion, this study presents a simple method with low 
computational requirements, which significantly improves the overall 
performance of the position estimation over conventional and advanced 
methods. Also, the overall performance of the speed estimation is 
slightly improved over conventional methods, but worse speed estima-
tion is achieved than the advanced ones. 
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