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A B S T R A C T   

Monitoring the status of rotating components is important in modern machinery. The goal of this study is to 
evaluate the feasibility of using a k-Nearest Neighbors (kNN) classifier combined with a Harmony Search (HS) 
algorithm, to detect the operational status of rotating components within agricultural machines. Vibration data, 
the source data, were acquired from four accelerometers located along the chassis of a harvester. Five operational 
statuses of three rotating components of the harvester were studied: engine (low/maximum speed), thresher, and 
chopper (on/off and balanced/unbalanced). The methodology includes vibration signal acquisition, data pre-
processing, smoothing, preselection of frequencies, Brute Force (BF) and Harmony Search frequency selection, 
and classification with kNN. The input frequencies for the classifier were chosen with either BF search or HS. The 
main results of the study were: i) the preselection of frequencies reduced the training time between 92.2% and 
95.6%; ii) the smoothing stage improved accuracy; iii) HS reduced the training time between 82% and 90% in 
comparison with BF, reaching accuracies of nearly 100% in the five operational statuses with only 2 input 
frequencies; iv) similar levels of accuracy were obtained when using data from the accelerometers at different 
locations. The results suggested that it was feasible to predict the operational status of rotating components of 
agricultural machines using a kNN classifier with the combination of preselection, smoothing, and the HS al-
gorithm. This feasibility was achieved both in terms of accuracy and computational burden, building upon 
previously proposed methods.   

1. Introduction 

Maintenance in industrial and agricultural machines can be per-
formed in three ways: corrective, preventive, and predictive mainte-
nance (Mobley et al., 2008; Sullivan et al., 2002). Predictive 
maintenance, also referred to as condition-based maintenance, refers to 
continual evaluations of the actual operating conditions of the machine 
and maintenance operations are then planned based on the results of the 
evaluation (Ali and Abdelhadi, 2022). In this paper, predictive mainte-
nance will be addressed. 

The rotating components of industrial and agricultural machines can 
fail, mainly because of rotating imbalance within the machine casing 

(Reda and Yan, 2019), and bearing faults (Ali and Abdelhadi, 2022). 
Imbalance and faulty bearings can be detected by analyzing vibration 
data from sensors attached near the rotating components (Cecchini 
et al., 2021; Mohd Ghazali et al., 2021) Vibration signals can mainly be 
acquired in three ways: (i) measuring relative displacement between a 
sensor and a device or mark, (ii) sensor measurements of absolute speed, 
and (iii) sensor measurements of absolute acceleration. The most pop-
ular way to measure vibrations in rotating machines is measuring ab-
solute acceleration with piezoelectric accelerometers (Randall, 2004a, 
2004b). 

Methods for predicting faults by processing vibration data can be 
grouped into two categories: model-based methods and data-driven 
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methods. Model-based methods, on the one hand, employ specific 
knowledge and vibration faults and their effects, in order to implement a 
model that is able to predict faults (Mohd Ghazali et al., 2021; Randall, 
2004a). Data-driven methods, on the other hand, use machine learning 
methods to train the model once the data have been acquired, without 
using previous knowledge of this process for the model implementation 
(Mohd Ghazali et al., 2021). Data-driven methods normally implement a 
feature extraction stage where signals, once acquired, are processed to 
obtain features, which are parameters related with the status of the 
monitored machine (Yang et al., 2015). Some features are obtained from 
the signals acquired within the time domain (Althubaiti et al., 2022; 
Mystkowski et al., 2022; Prakash Kumar et al., 2022), and others are 
obtained in the frequency domain, employing, among others, the Fast 
Fourier transform (FFT) (Riaz et al., 2017). After the feature extraction, 
a selection of features usually follows to identify the most relevant 
features of a dataset for the input information. This feature selection 
process reduces computation cost and increases the performance of the 
classification system. Many algorithms have been designed and devel-
oped for feature selection, inspired by phenomena that can be seen in 
nature, such as Cuckoo search, Bat algorithm, Firefly algorithm, Flower 
pollination algorithm, Krill herd algorithm, Grey wolf optimizer, Ant 
lion optimizer, and Dragonfly algorithm (Agrawal et al., 2021). In 
contrast to the previously stated algorithms, the Harmony Search (HS) 
algorithm is based on an artificial phenomenon: the so-called music 
Improvisation process (Woo Geem et al., 2001). These algorithms have 
been implemented in combination with various types of classifiers, such 
as Support Vector Machine (SVM), Artificial Neural Network (ANN), 
Naïve Bayesian, Decision Tree, and k-Nearest Neighbors (kNN), in order 
to select the best set of features for the input information and therefore 
to reduce computational complexity (Sudhir et al., 2017). 

Numerous researchers have made significant contributions to 
methods for processing vibration data to predict faults in rotating ma-
chinery: (Henriquez et al., 2014; Liang et al., 2014; Liu et al., 2018; Riaz 
et al., 2017; Tiboni et al., 2022; Wang et al., 2019). Several fault 
detection diagnosis methods have been proposed in this field involving 
the use of ANN (Bin et al., 2012; Guo et al., 2018; Paulraj et al., 2013; 
Tian and Liu, 2019; Tseng et al., 2014; Tseng et al., 2018), Deep learning 
(Chen et al., 2020; Li et al., 2016), kNN (Liang et al., 2015), K-means (Lu 
et al., 2015), Multi-output neuro-fuzzy classifiers (Rajabi et al., 2022), 
and other methods (Nembhard et al., 2015). Moreover, some fault 
diagnosis techniques have also been implemented in the literature 
applied to rotating machinery based on algorithms such as Fuzzy kNN 
and Kernel Independent Component Analysis (KICA) (Li et al., 2013), 
Bat algorithm (Tseng et al., 2018), Genetic algorithms (Lu et al., 2015), 
and HS (Chen et al., 2020). Nevertheless, there is little research within 
the field of agriculture (Xu et al., 2014; Yao et al., 2017, 2022; Zhang, 
2015). 

Our team has conducted research on guidance of tractors (Alonso- 
Garcia et al., 2011; Garcia Martin and Gomez Gil, 2008; Gomez-Gil et al., 
2011a–c, 2013; Gómez et al., 2006), machine vision in agriculture 
(Arribas et al., 2011; Guevara-Hernandez and Gomez-Gil, 2011; Martí-
nez-Martínez et al., 2018; Ruiz-Ruiz et al., 2009; Silva Junior et al., 
2012), crop drying (Martínez-Martínez et al., 2012, 2015b), acoustics 
applied to agricultural sprayers (Ruiz-Gonzalez et al., 2017), improving 
the health of farmers (Gomez-Gil et al., 2014), yield mapping of har-
vesters (Gómez-Gil et al., 2011), and the optimization of agricultural 
spreaders (Gomez-Gil et al., 2009). Moreover, to the best of the authors’ 
knowledge, we are the only team to have published three papers over 
the past few years focused on predictive maintenance and condition 
monitoring in agricultural machinery. Specifically, vibration signals 
from one or various accelerometers placed on a combine harvester were 
analyzed using different techniques, such as SVM (Ruiz-Gonzalez et al., 
2014), ANN (Martínez-Martínez et al., 2015a) and Composite Spectrum 
(Feijoo et al., 2020), to detect the working status of rotating compo-
nents. The accuracy reached by Ruiz-Gonzalez et al. and Martínez- 
Martínez et al. ranged from 80 % to 85 % except in one case, the engine, 

that reached 100 % in the ANN study. In these previous research articles 
on predictive maintenance the use of other processing techniques was 
proposed as a future line of research, in order to improve the previous 
accuracies and to simplify the computational burden of the data. For 
example, analyzing the vibration data from the same harvester, and 
applying a different pattern recognition of the rotating components with 
less computational complexity. 

The kNN classifier is a classic pattern recognition method. Conven-
tional kNN predicts the test sample category according to the k training 
samples which are the nearest neighbors to the test sample, assigning it 
to the most probable category (Puspadini et al., 2020; Zhang et al., 
2018). The kNN classifier has shown very good performance in medical 
data classification (Hans et al., 2020; Liang et al., 2015; Satria et al., 
2021; Singh et al., 2022), software defect prediction (Goyal, 2022), 
engineering (Swarna et al., 2022), facial recognition (Sugiharti et al., 
2020), predicting economic events (Imandoust and Bolandraftar, 2013), 
and the detection of gases (Yang et al., 2016). In agriculture, kNN has 
been applied to weather situations and forecasts (Kaur et al., 2014; Kim 
et al., 2016), and seed classification (Sabancı and Akkaya, 2016). kNN 
has three major limitations: great calculation complexity, full depen-
dence on a training set, and no weight difference between each class 
(Lubis et al., 2020). To overcome these limitations, the computational 
burden can be reduced by pre-processing algorithms, to select the set of 
components for the input information of the classifier. 

The HS algorithm is a global optimization algorithm introduced by Z. 
W. Geem and J. H. Kim in 2001, inspired by the principle of musical 
improvisation (Geem, 2006; Woo Geem et al., 2001). A heuristic method 
is used in the HS algorithm to solve discrete optimization problems. 
Despite not finding the optimal solution, it has the advantage of finding 
a suboptimal solution within a shorter time and within lower compu-
tational times. An alternative to HS is the Brute Force (BF) algorithm, 
which evaluates all the possible options for the problem and considers 
the best one as the solution to the problem. The HS algorithm with 
different classifiers has been applied in many areas as a feature selection 
method, mainly using biodata in healthcare systems (Abdulkhaleq et al., 
2022), for benchmark datasets (Yusup et al., 2019), in data mining 
(Assad and Deep, 2016), and renewable energy (Geem and Yoon, 2017). 
Nevertheless, HS with a kNN classifier has been specifically used in only 
a few studies on image classification (Chen et al., 2012), benchmark 
dataset (Krishnaveni and Arumugam, 2013), and spam detection 
(Rajamohana et al., 2017). To the best of our knowledge, neither the HS 
algorithm for selecting the set of frequencies for the input nor the kNN 
classifier have been applied to rotating component fault detection in 
vibration-based monitoring of agro-industrial machinery. 

The main goal of this article is to assess the feasibility of the appli-
cation of an HS algorithm combined with a kNN classifier, in order to 
estimate the state of the three rotating components of a harvester, en-
gine, thresher, and chopper, by analyzing vibration signals acquired 
from accelerometers on the chassis. Four specific sub-objectives are 
proposed to accomplish this main objective. First, to compare classifier 
accuracy and training time when all the frequencies or a preselection of 
frequencies are employed as the classifier input. Second, to assess 
whether smoothing the vibration signal in the pre-processing stage will 
produce any improvement in accuracy. Third, to compare classifier ac-
curacy and training time when applying the HS algorithm or when 
employing BF to select the frequencies given as the kNN inputs. And 
fourth, to compare classifier accuracy when data from accelerometers at 
different locations are individually evaluated. 

2. Materials and methods 

2.1. Equipment 

A twelve-year-old New Holland TC56 harvester (New Holland Agri-
culture, New Holland, PA, USA) with 4050 working hours on the clock, 
equipped with a Moresil 718 seven-row sunflower header (Moresil SL, 
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Posadas, Córdoba, Spain) was used for the experiments. 
Four Brüel & Kjaer 4507-B-006 uniaxial accelerometers (HBK - Hot-

tinger Brüel & Kjær A/S, London, United Kingdom) were used to mea-
sure vibration signals. Accelerometers a1, a2, and a3 were located on the 
left side of the chassis, oriented in the lateral direction, at a distance 
from the rear wheel axle of 300, 1980, and 3006 mm, respectively, and 
at a height from the floor of 1010, 1040, and 1560 mm, respectively. The 
fourth accelerometer, a4, was located on the left side of the lower rear 
beam of the header, at 1520 mm from the header center, oriented in the 
longitudinal direction. The accelerometer positions are represented in 
Fig. 1. The sensors were inserted in mounting clips that were adhered to 
the harvester chassis. 

The data-acquisition instruments consisted of a National Instrument 
(NI) 9234 data acquisition module for acquisition of analogic input vi-
bration signals, and a NI compact DAQ chassis (NI cDAQ-9172), to con-
nect the module to the laptop. NI Sound and Vibration Assistant software 
was used for data acquisition and the MATLAB software package for data 
analysis (The MathWorks Inc., Natick, MA, USA) running on a laptop 
Asus K72J. 

2.2. Methodology 

The methodology consisted of several stages: 1) Acquisition of the 
vibration signal from the chassis of a harvester combining the different 
statuses of the three rotating components of the machine: engine, 
thresher, and chopper; 2) dataset preprocessing; 3) smoothing and 
preselection of the most relevant frequencies; 4) dimensional reduction 
in which BF and HS algorithms were applied to select the frequencies 
with most information on the status of the components; 5) kNN classi-
fication; and 6) comparison of the results. A brief description of each 
step is provided in the following subsections. The schematic diagram of 
the proposed method is shown in Fig. 2. 

2.2.1. Data acquisition of vibrations and rotating component status 
The machine was operating in threshing mode, was stationary, and 

the header was deactivated when the vibration signal was acquired on 
the harvester chassis. 

Several working conditions were performed in the harvester 
depending on the status of three rotating components: engine (low rpm/ 
maximum rpm); thresher (on/off); thresher (balanced/imbalanced); 
chopper (on/off); chopper (balanced/imbalanced). 

Imbalances in the chopper are typically caused by blade breakage 
against pebbles within the straw, an effect that was generated in this 
study by removing one of the chopper blades. Thresher imbalances are 
usually caused by non-uniform wear of the bars, due to usage. An effect 
that was simulated by attaching an eccentric weight to the thresher. 

As shown in Table 1, with the combination of the status of the three 
rotating components, eighteen different data-acquisition processes were 
performed. A total of 18 vibration signals, each one with a length of 60 s, 

were acquired from each of the four accelerometers, at a sampling fre-
quency of 1706 Hz. Thus, 102,360 samples were obtained in each of the 
18 working conditions that were studied (1–18). 

2.2.2. Preprocessing stage 
Once acquired, each data sequence was preprocessed in two sub-

stages: splitting and transforming to the frequency domain. Before the 
splitting substage there were 18 vibration signals, of 60 s each, for each of 
the 4 accelerometers. In the splitting substage each signal of 60 s, con-
sisting of 102,360 samples, was divided into 10 epochs of 6 s, thereby 
obtaining 10,236 samples for each epoch. 

In the transforming substage, the Discrete Fourier Transform (DFT) of 
each epoch was calculated, using FFT to obtain a symmetrical spectrum 
of 10,236 frequencies. Negative frequency components were removed, 
because the FFT of a real signal is a conjugate symmetric signal, so the 
absolute value of its corresponding negative and positive frequencies are 
the same. Hence, only the non-negative frequency components were 
considered, obtaining a 5118-frequency spectrum. The separation of two 
consecutive frequencies, which is the frequency resolution, was Δf =

fs
N = 0.17 Hz, where fs is the sampling rate (1706 Hz), and N is the 
number of frequencies of the spectrum (10236). 

2.2.3. Smoothing and preselection of frequencies 
This stage was divided into two substages, smoothing and preselection, 

that were or were not applied to assess the effects on final performance 
of the system. 

The smoothing substage reduces the noise of the preprocessed signal. 
It was applied with a moving-average smoothing low-frequency filter 
with a window size of 5 and was implemented with the convolution of 
the FFT vector input with a five-element vector, all of whose compo-
nents had a value of 1/5. This window size was selected via a trial-and- 
error procedure, selecting the one that visually reduced most noise 
without affecting the vibration signal data. 

The preselection substage removes the elements of the vectors that 
add no relevant information, in order to reduce the size of the vectors, by 
eliminating the least relevant frequencies. To do so, the mean value, the 
variance, and the coefficient of variation (variance divided by the mean 
value) were calculated for each of the 5118 frequencies of the epoch 
spectrums. A threshold was then selected by an expert with a trial-and- 
error procedure, in order to reduce the elements with low coefficients of 
variation, obtaining vectors with fewer than 400 elements, thereby 
reducing the number of elements to around 7 % (1 for each 14). 

2.2.4. Selection of the input data for the classifier stage: The Brute Force 
and the Harmony Search (HS) algorithms 

The set of frequencies as input information for the classifier was 
selected with the application of either the Brute Force or the HS 
algorithm. 

2.2.4.1. Brute Force. Brute Force, also called exhaustive search, is 
characterized by an evaluation of all possible options of an optimization 
problem, so as to select the best one. The best option among all possible 
options can be found, but it has the disadvantage of needing a lot of 
computation time to obtain the result. It cannot therefore be employed 
in some scenarios, because the computational power needed to solve the 
problem is not feasible. 

2.2.4.2. Harmony Search (HS) algorithm. The HS algorithm involves 
several steps that were explained in Geem et al. (Woo Geem et al., 2001) 
and in Abdulkhaleq et al. (Abdulkhaleq et al., 2022). The HS algorithm 
works with a group of solution vectors, with each vector containing 
elements that are the harmonies, or in this case the frequencies. This 
group of solution vectors is stored in an element called Harmony 
Memory (HM), which is initialized with a set of random solution vectors 
and is updated on each iteration of the HS algorithm. HM Size (HMS) is 

a1a2a3

a4

Fig. 1. Harvester diagram in which the red symbols represent the location of 
the four accelerometer sensors on the chassis: a1, a2, a3, and a4. Moreover, the 
yellow cross represents the location of the engine, the blue cross represents the 
location of the thresher cylinder, and the orange cross represents the location of 
the straw chopper. 
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the number of selected solution vectors stored in the HM. In this work, it 
was set at 50, because that figure was big enough to have a represen-
tative set of solutions for our problems, but also small enough to execute 
each iteration within a reasonable time. Harmony Memory Considering 
Rate (HMCR) is the rate of choosing one vector element from those 
stored in HM in the following iteration. In our work, HMCR was set at 
0.75, meaning that there was a 25 % probability of selecting one fre-
quency from among all the frequencies and a 75 % probability of 
selecting one frequency from the HM. This HMCR value was selected 
with a trial-and-error procedure and considering the number of possible 
frequencies, lending more importance to the frequencies in the HM, but 
helping the HS algorithm to select frequencies that were not stored in the 
HM. The Pitch Adjusting Rate (PAR) determines whether the decision 
variables can change to a neighboring value. In this study, it was set to 
0.10, which is the same PAR as the one proposed by Geem et al. (Woo 
Geem et al., 2001). In other words, there is a 10 % probability that the 
frequency can change to a neighboring value. The PAR window, that is, 
the maximum distance from the replaced frequency to a new frequency 
using the pitch adjustment operator, was set at 5. Finally, the number of 
algorithmic iterations was set at 5000, because the initial experiments 

showed that this number of iterations allowed the HS to converge, 
satisfying in most cases the termination criteria of reaching a 100 % 
accuracy. 

2.2.5. Classification: k-Nearest neighbors (kNN) 
A kNN classifier (Houssein et al., 2021) was used to estimate the 

operational status for each of the five statuses, which were described in 
Table 1, and the classifier performance was analyzed calculating mean 
accuracy, precision, recall, and F1 score obtained using a leave-one-out 
cross-validation. The value of k was chosen beforehand, in such a way 
that it resulted in the highest classification accuracy while also keeping 
the number of neighbors as low as possible. Thus, it was set at k = 5 
neighbors for all the subsequent results after having determined that 
value by trial-and-error. Furthermore, Euclidean distance was employed 
as the distance metric to calculate the nearest neighbors. 

2.2.6. Comparative performance analysis 
A comparative analysis of performance was carried out by comparing 

the following four scenarios: (i) evaluation of the influence of the pre-
selection substage, comparing the performance achieved when using it or 
not to reduce the number of candidate frequencies to the later substage; 
(ii) evaluation of the influence of the smoothing substage and the number 
of frequencies used as input for the kNN classifier; (iii) evaluation of the 
performance achieved when input frequencies were chosen with HS 
versus BF; and (iv) evaluation of the influence of the location of the 
accelerometer, comparing the performance achieved at four different 
locations. 

The performance was considered by analyzing the following metrics: 
training time, accuracy, precision, recall, and F1 score. It was necessary 
to consider the different operational statuses as either positive or 
negative states, in order to calculate some of these metrics. In our case, 
we considered the most common condition as the negative condition. 
Thus, “maximum rpm” engine status, “off” thresher and chopper status 
and “balanced” thresher and chopper status were considered as negative 
while “low rpm” engine status, “on” thresher and chopper status and 
“imbalanced” thresher and chopper status were considered as positive to 
calculate the metrics when necessary. 

3. Results 

3.1. Evaluation of the influence of preselection 

The results obtained with the kNN classifier using BF to select the 
frequencies, using accelerometer a1, and without preselection (number 
of frequencies analyzed 5118), can be seen in Table 2. 

With 1 selected frequency as input for the kNN classifier, the accu-
racy reached was between 82.5 % and 100 % for the five operational 
statuses that were considered. And the range of the training time was 
between 1.2 min and 2 min. Precision, recall and F1 score metrics are 
presented in Table A1, where slight differences between precision, 

Fig. 2. Schematic diagram of the proposed method developed for predicting the status of rotating components in a harvester by processing vibration signals.  

Table 1 
Working conditions studied according to the combination of the status of the 
engine (low rpm/maximum rpm); thresher (on/off); thresher (balanced/imbal-
anced); chopper (on/off); chopper (balanced/imbalanced).  

Working 
conditions 

Engine 
status Thresher status Chopper status 

1 

Low RPM 

Off 
(Deactivated) 

Off 

2 
On 

Balanced 

3 Imbalanced 

4 

On 
(Activated) 

Balanced 
(healthy) 

Off 

5 
On 

Balanced 

6 Imbalanced 

7 
Imbalanced 

(faulty) 

Off 

8 
On 

Balanced 

9 Imbalanced 

10 

Max RPM 

Off 
(Deactivated) 

Off 

11 
On 

Balanced 

12 Imbalanced 

13 

On 
(Activated) 

Balanced 
(healthy) 

Off 

14 
On 

Balanced 

15 Imbalanced 

16 
Imbalanced 

(faulty) 

Off 

17 
On 

Balanced 

18 Imbalanced  
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recall, F1 score and accuracy were obtained. For this reason, both in this 
table and in subsequent tables the results with these metrics will be 
included in Appendix A, as they add no further information to the results 
of the accuracy metric. Analogous results as presented in Table 2, but 
with instead of without preselection, can be seen in Table 3. 

As shown in Table 3, the range of selected frequencies was between 
365 and 389. The range of the accuracy achieved was between 80 % and 
100 %. And the range of the training time was between 0.095 min and 
0.117 min. 

Fig. 3 shows the comparison of the results obtained with kNN 
without preselection (Table 2) and kNN with preselection (Table 3), in 
the five operational statuses that were studied, and using 1 input 
frequency. 

As shown in Table 3 and Fig. 3, whether or not using preselection, the 
accuracy was the same for four out of five operational statuses, where 
only for the balanced chopper a difference of less than 2.5 % was 
observed. The training time with the preselection was reduced between 
92.2 % and 95.6 % (a 1.2–2 min range using all the frequencies and a 
0.095–0.117 min range applying preselection of frequencies). 

3.2. Evaluation of the influence of smoothing and the number of input 
frequencies on the accuracy 

Accuracy with and without the smoothing substage and using 1-to-3 
input frequencies was compared, so as to assess the influence of 
smoothing and the number of input frequencies. HS frequency selection 
was applied for the purposes of the comparison, and under the following 
conditions: using accelerometer a1, considering the five operational 
statuses that were studied and with preselection. The preselection sub-
stage was employed, as it was verified in subsection 3.1 that it reduced 
the training time, although accuracy was hardly reduced. Table 4 and 
Fig. 4 show the results of this comparison. 

As shown in Table 4 and Fig. 4, the accuracy improves with 
smoothing, reaching an accuracy of 100 % with 2 input frequencies in 
four of the five conditions that were analyzed, versus only two statuses 
when smoothing was not applied. Moreover, with 3 input frequencies, 
100 % accuracy is reached in all the operational statuses that were 
analyzed with smoothing. In the light of the results, the smoothing 
substage was applied in the following subsection (3.3) and only the 
solutions with 2 frequencies were considered. 

3.3. Comparison of accuracy and training time between BF and HS for 
frequency selection 

The results obtained with kNN when using BF to select the fre-
quencies were compared with the results of kNN when employing the HS 
algorithm to select the frequencies under the same conditions: using 
accelerometer a1, with preselection and smoothing, with a number of 
selected frequencies as input for the classifier equal to 2 and considering 
the five operational statuses that were studied (Table 5 and Fig. 5). 

As shown in Table 5 and Fig. 5, the accuracy obtained was nearly 
100 % for the five operational statuses, obtaining the same accuracy 
with BF and HS. However, with HS a reduction in training time was 
achieved between 82 % and 90 % (from a range of 7.6–22.8 min with BF 
to 1.3–2.4 min with HS). 

3.4. Comparison of the accuracy of the four accelerometers using HS 

Finally, the accuracy obtained with each of the four accelerometers 
was compared under the same conditions: using HS to select the fre-
quencies, with preselection and smoothing, with 3 input frequencies and 
in the five operational statuses that were studied. The number of input 
frequencies chosen was 3 because with this number the accuracy was 
100 % in the five operational statuses that were studied. 

As shown in Table 6 and Fig. 6, the accuracy was similar using the 
data obtained from the four accelerometers; of 100 % in all but two cases 
(99.4 % with accelerometer a2 and chopper; 96 % with accelerometer a3 
and balanced thresher). 

4. Discussion 

The main results of the study suggest that, for the detection of the 
working status of rotating components within agro-industrial machin-
ery: (i) it is feasible to estimate the status of the rotating components 
using a kNN classifier; (ii) the preselection and smoothing stages were 
important for reducing the training time and improving the accuracy, 
respectively; (iii) using HS instead of BF for the frequency selection 
reduced classifier training time; (iv) the position of the accelerometers 
appeared to have no significant influence on the accuracy when 
applying the proposed methodology; and (v) in our particular experi-
mental setup, a 100 % classification accuracy could be achieved with 

Table 2 
Accuracy and training time obtained with kNN combined with Brute Force, without preselection (5118 frequencies), from the accelerometer a1, using 1 input fre-
quency, in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher (balanced/imbalanced), chopper (on/off), and 
chopper (balanced/imbalanced). Precision, recall and F1 score results can be seen in Table A1.  

Accelerometer 
Total 

Frequencies 
(n) 

Input 
Frequencies 

(n) 

Operational 
Statuses 

Accuracy Training time 
(minutes) 

a1 

5118 

1 

Engine (low/max.) 99.44 % 1.73 
5118 Thresher (on/off) 100 % 1.66 
5118 Thresher (bal./im.) 82.50 % 1.21 
5118 Chopper (on/off) 82.78 % 2.00 
5118 Chopper (bal./im.) 82.50 % 1.78  

Table 3 
Accuracy and training time obtained with kNN combined with Brute Force, with preselection (365 to 380 frequencies), from the accelerometer 1, using 1 frequency as 
the input of the classifier, and in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher (balanced/imbalanced), 
chopper (on/off), and chopper (balanced/imbalanced). Precision, recall and F1 score results can be seen in Table A2.  

Accelerometer 
Preselected 
Frequencies 

(n) 

Input 
Frequencies 

(n) 

Operational 
statuses 

Accuracy 
Training time 

(minutes) 

a1 

365 

1 

Engine (low/max.) 99.44 % 0.103 
361 Thresher (on/off) 100 % 0.109 
380 Thresher (bal./im.) 82.50 % 0.095 
371 Chopper (on/off) 82.78 % 0.117 
346 Chopper (bal./im.) 80.00 % 0.079  
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only 3 frequencies as input. These results are consistent with the 
objective of the study which sought to optimize the classifier and reduce 
the complexity and computational burden of other techniques proposed 
in previous works from the literature to detect the operational statuses of 
the rotating components of agricultural machines by applying data pre- 
processing, the HS algorithm, and the kNN classifier. 

In this research, using 1 selected frequency as input for the classifier, 
the accuracy was similar with or without preselection of frequencies 
(between 82.5 % and 100 %). However, the training time with 

preselection of frequencies was reduced between 92.2 % and 95.6 %. A 
result that suggested that the preselection of frequencies is an important 
stage in the application of the classifier, in order to reduce the training 
time. 

In this study, the smoothing substage improved accuracy. When 
smoothing was applied, accuracy levels of 100 % were reached with 2 
input frequencies in four of the five operational statuses that were 
analyzed. In contrast, when smoothing was not applied, 100 % accuracy 
was only reached in two of the five statuses. In addition, with 3 kNN 

(a) (b)
Fig. 3. Comparison of (a) accuracy and (b) training time, obtained with kNN combined with Brute Force, without preselection (5118 frequencies) and with pre-
selection (346 to 380 frequencies), from the accelerometer a1, using 1 input frequency, and for the five operational statuses that were studied: engine (low rpm, 
maximum rpm), thresher (on/off), thresher (balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced). 

Table 4 
Accuracy and training time obtained with Harmony Search (HS) algorithm with and without smoothing under the same conditions: with preselection (346 to 380 
frequencies), from the accelerometer a1, using 1-to-3 input frequencies, and in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher 
(on/off), thresher (balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced). Precision, recall and F1 score results can be seen in Table A3 and 
Table A4.  

Accelerometer 
Preselected 
Frequencies 

(n) 

Input 
Frequencies 

(n) 

Operational 
Statuses 

Accuracy 
Without smoothing 

HS 

Accuracy 
With smoothing 

HS 

a1 

365 

1 

Engine (low/max.) 99.44 % 100 % 
361 Thresher (on/off) 100 % 100 % 
380 Thresher (bal./im.) 82.50 % 80.83 % 
371 Chopper (on/off) 82.78 % 85.56 % 
346 Chopper (bal./im.) 80.00 % 92.50 % 

365 

2 

Engine (low/max.) 100 % 100 % 
361 Thresher (on/off) 100 % 100 % 
380 Thresher (bal./im.) 98.33 % 100 % 
371 Chopper (on/off) 92.22 % 98.89 % 
346 Chopper (bal./im.) 99.17 % 100 % 

365 

3 

Engine (low/max.) 100 % 100 % 
361 Thresher (on/off) 100 % 100 % 
380 Thresher (bal./im.) 99.17 % 100 % 
371 Chopper (on/off) 96.67 % 100 % 
346 Chopper (bal./im.) 100 % 100 %  
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input frequencies, 100 % accuracy was reached in all operational sta-
tuses analyzed with smoothing. This can be explained because 
smoothing combines information from adjacent frequencies and reduces 
the noise, thus improving the accuracy of the method. 

One of the main sub-objectives of the study was to compare the ac-
curacy of HS and the BF search in the frequency selection. An accuracy 
of nearly 100 % with both BF and HS was found for the five operational 
statuses. However, a reduction in training time was achieved with HS 
between 82 % and 90 % (from a range of 7.6 to 22.8 min with BF and 
from 1.3 to 2.4 min with HS). It should be noted that the training time 
when using BF for frequency selection greatly increased as the number 
of frequencies increased, ranging between 0.079 and 0.117 min with 1 
input frequency (Table 3) and between 7.69 and 24.10 min with 2 input 
frequencies (Table 5). That increase happens because BF explores all the 
combinations of frequencies, whereas the HS algorithm selects only a set 
of frequencies, finding a suboptimal solution within less time. 

Finally, the accuracy obtained when employing HS to select the 
frequencies was similar in the four accelerometers placed in different 
locations of the machine, nearly 100 % accuracy in all operational sta-
tuses with 3 inputs (Table 6). It therefore suggests that when testing 
different locations, the position of the accelerometers had no significant 
influence on the accuracy that was achieved. 

When analyzing the performance metrics of the proposed method, it 
can be seen that the values of accuracy, precision, recall and F1 score 
were similar for all the experiments. The proposed method therefore 

generated classifiers with balanced precision and recall. In the case of 
needing greater precision than recall or vice versa, the HS algorithm 
fitness value should be modified, replacing the accuracy with a param-
eter based on the metric of interest. 

Little attention has been given to predictive maintenance, condition 
monitoring, and fault detection systems for agricultural machinery 
(Zhang, 2015). Moreover, to the best of our knowledge, no research has 
previously been published in which a kNN classifier employing a HS 
algorithm to select the classifier inputs has been used in real agricultural 
machinery. Analyzing the literature on the evaluation of predictive 
maintenance or fault detection using vibration signals revealed that 
accuracy values between 90 % and 98 % were obtained (Guo et al., 
2018; Li et al., 2013; Paulraj et al., 2013; Tseng et al., 2014); values that 
are numerically within the range of the results presented in this article. 
Nevertheless, the vibration patterns analyzed in the literature have not 
been applied in a real machine but in simple experimental models for the 
detection of damages such as in a gearbox (Li et al., 2013), a steel plate 
(Paulraj et al., 2013), in a motor (Guo et al., 2018; Tseng et al., 2014), or 
in a rotating experimental machine (Guo et al., 2018). 

Our team has published three articles on the predictive maintenance 
of agricultural machinery in which vibration signals are analyzed on a 
combine harvester, applying different techniques: an SVM-based clas-
sifier (Ruiz-Gonzalez et al., 2014), an ANN-based expert system (Mar-
tínez-Martínez et al., 2015a), and a Composite Spectrum data-fusion 
technique (Feijoo et al., 2020). These works can be compared to this 

Fig. 4. Comparison of accuracy obtained applying Harmony Search (HS) with and without smoothing under the same conditions: with preselection (346 to 380 
frequencies) and smoothing, using 1-to-3 input frequencies, and in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), 
thresher (balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced). 

Table 5 
Accuracy and training time obtained with Brute Force (BF) and with Harmony Search (HS) under the same conditions: with preselection (346 to 380 frequencies), from 
the accelerometer a1, using 2 input frequencies, and in the five operational statuses studied: engine (low rpm, maximum rpm), thresher (on/off), thresher (balanced/ 
imbalanced), chopper (on/off), and chopper (balanced/imbalanced). Precision, recall and F1 score results can be seen in Table A5.  

Accelerometer 

Preselected 
Frequencies 

(n) 

Input 
Frequencies 

(n) 
Operational 

Statuses 

Accuracy Training time 
(minutes) 

BF HS BF HS 

a1 

365 

2 

Engine (low/max.) 100 % 100 % 18.42 2.39 
361 Thresher (on/off) 100 % 100 % 22.85 2.20 
380 Thresher (bal./im.) 100 % 100 % 8.95 1.39 
371 Chopper (on/off) 98.89 % 98.89 % 24.10 2.30 
346 Chopper (bal./im.) 100 % 100 % 7.69 1.39  
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study because a similar research design was applied: the analysis of vi-
bration signals from one or various accelerometers placed on a combine 
harvester, in order to detect the working status of several rotating 
components. 

In 2014, an SVM-based classifier using a vibration signal acquired 
from a single point on the machine chassis was applied (Ruiz-Gonzalez 
et al., 2014). An 85 % mean cross-validation accuracy was reached with 
this classifier, using a maximum of 7 features as its input. In comparison, 
in our study the accuracy ranged 100 % in four of the five operational 
statuses studied with only 2 input frequencies. It was not possible to 
compare the training time, because Ruiz-Gonzalez et al. did not analyze 
that parameter. 

In 2015, Martínez-Martínez et al., using a single vibration signal from 
one accelerometer and applying an ANN-based expert system, found 
that the status of several rotating components placed meters away from 
the accelerometer could be estimated to a high degree of accuracy 
(Martínez-Martínez et al., 2015a). In this article, a GA-based learning 
method was proposed to fit the ANN weights and biases. High levels of 
accuracy were obtained, but lower than those obtained with the current 
method: the maximum accuracy using ANN (100 %) was only reached in 
one case (engine speed study), and the lowest was 80 %. In contrast, in 
this present study, accuracies of between 98.89 % and 100 % were 
achieved in all cases by applying the HS algorithm and setting the 
number of kNN input frequencies to 2. It was not possible to compare the 
training time, because Martínez-Martínez et al. only considered the 
number of iterations of their proposed model when they analyzed that 
parameter. 

In 2020, Feijoo et al. conducted a composite spectrum analysis of the 
signals from four accelerometers situated at four points on a combine 
harvester. Their work demonstrated that the rotating imbalances of 
various components can be detected with a reduced number of accel-
erometers located in non-optimal positions, and that it is feasible to 
simplify the monitoring (Feijoo et al., 2020). In the present study, the 

results obtained with the vibration signals of four accelerometers were 
also analyzed and compared, and similar results when testing different 
locations were obtained. It is therefore also suggested in our study that 
accelerometers can be placed in any position for high accuracy detection 
of machine component vibrations: engine, thresher, and straw chopper. 

Overall, it has been suggested in the present study that the applica-
tion of a relatively simple kNN classifier with techniques such as pre-
selection, smoothing, and the HS algorithm for the detection of the 
working status of rotating components of agro-industrial machines, 
builds upon and outperforms any other previous approach in terms of 
accuracy. 

Precise calibrated piezoelectric accelerometers were employed in 
this study. However, similar levels of accuracy could be expected using 
less costly accelerometers in real-world applications, such as MEMS 
accelerometers used in mobile phones, despite their lower precision. 
Another feature to be considered, if less costly accelerometers were 
used, should be the sampling frequency: in our study the sampling fre-
quency was 1706 Hz, while most mobile telephone devices do not 
exceed 200 Hz. Future work could study how the accuracy of the method 
varies with the precision of the accelerometer and the sampling fre-
quency. Nevertheless, in the previous work of Ruiz-Gonzalez et al., an 
effective sampling frequency of 400 Hz was employed after applying 
downsampling, which suggests that further reductions could still ach-
ieve similar accuracies (Ruiz-Gonzalez et al., 2014). 

The proposed monitoring system could be easily implemented in 
other types of real-world agricultural machines for two reasons. First, no 
specific information on the machine is needed in the design of the 
method and no experts are needed to implement the prediction system 
and to supervise the process. Second, the data-acquisition stage can be 
simplified, as only one vibration sensor can be used to monitor several 
components of the machine, dramatically reducing the number of sen-
sors required and simplifying the wiring. That is a great advantage in 
modern agricultural machines, which have multiple shafts rotating at 

(a) (b)
Fig. 5. Comparison of (a) accuracy and (b) training time obtained with Brute Force (BF) and with Harmony Search (HS) under the same conditions: from the 
accelerometer a1, with preselection (346 to 380 frequencies) and smoothing, using 2 input frequencies, and in the five operational statuses that were studied: engine 
(low rpm, maximum rpm), thresher (on/off), thresher (balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced). 
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different speeds where monitoring each individual component would 
require a high number of accelerometers. Furthermore, this unique vi-
bration sensor can be arbitrarily positioned at quite some distance from 
the bearing supports, whereas previous studies refer to vibration sensors 
that were placed on the supports of the rotating components. Although 
this arbitrary positioning could make detection and monitoring of 
rotating imbalance more difficult, the results of this study have proven 
its feasibility. This study on a combine harvester, one of the most 
complex agricultural machines with multiple rotating and moving ele-
ments, has been successfully completed. The vibration signal that was 
processed contained the combined signals from both the three compo-
nents under analysis and many other components of the machine. 
Altogether, it suggests that the proposed system could be successfully 
implemented in any other type of agricultural machinery, and could lead 
to fast and low-cost machinery inspections, avoiding many mechanical 
faults and replacing expensive, time-consuming inspections that are 
frequently required nowadays. 

The current study has several strengths. First, the study has been 
applied to a real machine with the rotating components of the machine 
working. To our knowledge only our team has completed research on 
condition monitoring in real agricultural machinery and using a single 
accelerometer to monitor several rotating components. Second, the 
study builds upon and in terms of simplicity outperforms our previous 
approaches to real machines: only 1-to-3 inputs for the classifier, and 
accuracy levels better than or at least comparable to the accuracy ob-
tained with other more complex classifiers (Martínez-Martínez et al., 
2015a; Ruiz-Gonzalez et al., 2014). Third, the study has followed the 
line of research of our research team and has a similar experimental 
design to previous works, thereby improving upon the reliability of the 
comparisons between these studies. Fourth, the proposed system can be 
easily implemented in other types of machines. 

Finally, when compared with recent works in the literature in which 
the status of components using a vibration signal are evaluated, our 
method has some advantages: (i) despite the accuracy obtained being 
within the same range that in the literature, between 90 % and 98 % 
(Feijoo et al., 2020; Guo et al., 2018; Li et al., 2013; Martínez-Martínez 
et al., 2015a; Paulraj et al., 2013; Ruiz-Gonzalez et al., 2014; Tian and 
Liu, 2019; Tseng et al., 2014), in our study 100 % accuracy is reached 
under some operational statuses; (ii) our work estimated the status of 

three rotating components whereas most of them usually estimated the 
status of a single rotating component (Liang et al., 2014; Tian and Liu, 
2019; Tseng et al., 2014; Yang et al., 2015); and (iii) in previous works 
that estimated the status of several rotating components the acceler-
ometers were placed close to each of these components (Bin et al., 2012; 
Guo et al., 2018; Li et al., 2013; Lu et al., 2015; Nembhard et al., 2015), 
whereas in our study they were placed far from each other and from each 
rotating component. 

Nevertheless, there are some limitations to this work that should be 
taken into account before implementing the proposed method. The main 
limitation is that the data were gathered from a stationary harvester, 
that is, with the harvester wheels stopped, to facilitate the acquisition 
procedure. If the proposed estimation method is used when the moni-
tored machine is in motion, low-frequency interference signals would 
appear due to the unevenness of the terrain and the elasticity of the 
combine wheels. However, these signals are not expected to cause 
problems, because the frequencies of interest in the rotating components 
of these machines will almost certainly be much higher than the inter-
ference frequencies. Moreover, other components that generate vibra-
tion, such as the beater cylinder, the sieves box, the cleaning fan, the 
hydrostatic pump, the elevator chains, the augers, and the drum varia-
tors, were not studied in this work. Some of these components also 
generate friction-induced vibration. Despite these additional sources of 
vibrations, the imbalanced components under study have been detected 
with the present method. According to the experience of the authors, it is 
expected that the proposed method, evaluated in a stationary machine, 
could be applied in real-word conditions, and the results are expected to 
be similar to the results of a machine harvesting in the field. 

Futures lines of research that could be conducted are the evaluation 
and adjustment of the proposed methods working in real conditions, 
while the machine is harvesting in the field. Another future line could be 
to compare the performance of the proposed method with high-end and 
low-end accelerometers, evaluating the influence of accelerometer 
precision and the sampling frequency. Classification improvements 
could also be studied when a combination of vibration signals from 
several accelerometers is analyzed. 

Table 6 
Accuracy obtained using Harmony Search (HS) to select the frequencies recorded in the four accelerometers under the same conditions: with preselection (346 to 380 
frequencies), using 3 input frequencies, and in the five operational statuses: engine (low rpm/maximum rpm), thresher (on/off); thresher (balanced/imbalanced), chopper 
(on/off), chopper (balanced/imbalanced). Precision, recall and F1 score results can be seen in Table A6.  

Accelerometer 
Preselected 
Frequencies 

(n) 

Input 
Frequencies 

(n) 
Operational Statuses Accuracy 

HS 

a1 

365 

3 

Engine (low/max.) 100 % 
361 Thresher (on/off) 100 % 
380 Thresher (bal./im.) 100 % 
371 Chopper (on/off) 100 % 
346 Chopper (bal./im.) 100 % 

a2 

365 Engine (low/max.) 100 % 
361 Thresher (on/off) 100 % 
380 Thresher (bal./im.) 100 % 
371 Chopper (on/off) 100 % 
346 Chopper (bal./im.) 100 % 

a3 

365 Engine (low/max.) 100 % 
361 Thresher (on/off) 100 % 
380 Thresher (bal./im.) 95.83 % 
371 Chopper (on/off) 100 % 
346 Chopper (bal./im.) 100 % 

a4 

365 Engine (low/max.) 100 % 
361 Thresher (on/off) 100 % 
380 Thresher (bal./im.) 100 % 
371 Chopper (on/off) 100 % 
346 Chopper (bal./im.) 100 %  

F.J. Gomez-Gil et al.                                                                                                                                                                                                                           



Computers and Electronics in Agriculture 217 (2024) 108556

10

5. Conclusions 

The results obtained in this study have provided evidence that (i) it is 
possible to estimate with a high degree of accuracy the status of the 
rotating components of an agricultural machine from the vibration 
signal using a kNN classifier; (ii) applying the HS algorithm, it is possible 
to reduce the training time between 82 % and 90 % compared with BF; 
and (iii) there are no substantial differences in the accuracy between the 
different locations of the sensor. 
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See Table A1-A6.  

Fig. 6. Comparison of the accuracy applying Harmony Search (HS) with the four accelerometers, under the same conditions: with preselection (346 to 380 fre-
quencies) and smoothing, using 3 input frequencies, and in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher 
(balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced). 
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Table A1 
Accuracy, precision, recall and F1 score obtained with BF without preselection (5118 frequencies), from accelerometer a1, using 1 
kNN input frequency, in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher 
(balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced).  

Component 
Statuses 

Accuracy 
BF 

Precision 
BF 

Recall 
BF 

F1 score 
BF 

Engine (low/max.) 99.44 % 98.90 % 100 % 99.45 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 82.50 % 84.21 % 80.00 % 82.05 % 
Chopper (on/off) 82.78 % 86.18 % 88.33 % 87.24 % 

Chopper (bal./im.) 82.50 % 83.05 % 81.67 % 82.35 %   

Table A2 
Accuracy, precision, recall and F1 score obtained with Brute Force (BF) with preselection (346 to 380 frequencies), from accel-
erometer a1, using 1 frequency as the input of the kNN classifier, in the five operational statuses that were studied: engine (low rpm, 
maximum rpm), thresher (on/off), thresher (balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced).  

Operational 
statuses 

Accuracy 
BF 

Precision 
BF 

Recall 
BF 

F1 score 
BF 

Engine (low/max.) 99.44 % 98.90 % 100 % 99.45 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 82.50 % 84.21 % 80.00 % 82.05 % 
Chopper (on/off) 82.78 % 86.18 % 88.33 % 87.24 % 

Chopper (bal./im.) 80.00 % 80.00 % 80.00 % 80.00 %   

Table A3 
Accuracy, precision, recall and F1 score without smoothing, obtained with Harmony Search (HS) with preselection (346 to 380 frequencies), from accel-
erometer a1, using 1-to-3 kNN input frequencies, in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher 
(balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced).  

kNN Input 
Frequencies 
(n) 

Operational 
Statuses 

Without smoothing 
HS 

Accuracy Precision Recall F1 score 

1 

Engine (low/max.) 99.44 % 98.90 % 100 % 99.45 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 82.50 % 84.21 % 80.00 % 82.05 % 
Chopper (on/off) 82.78 % 86.18 % 88.33 % 87.24 % 

Chopper (bal./im.) 80.00 % 80.00 % 80.00 % 80.00 % 

2 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 98.33 % 100 % 96.67 % 98.31 % 
Chopper (on/off) 92.22 % 92.74 % 95.83 % 94.26 % 

Chopper (bal./im.) 99.17 % 98.36 % 100 % 99.17 % 

3 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 99.17 % 100 % 98.33 % 99.16 % 
Chopper (on/off) 96.67 % 98.31 % 96.67 % 97.48 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 %   
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Table A4 
Accuracy, precision, recall and F1 score with smoothing, obtained with Harmony Search (HS) with preselection (346 to 380 frequencies), from accelerometer 
a1, using 1-to-3 kNN input frequencies, in the five operational statuses that were studied: engine (low rpm, maximum rpm), thresher (on/off), thresher 
(balanced/imbalanced), chopper (on/off), and chopper (balanced/imbalanced).  

kNN Input 
Frequencies 

(n) 

Operational 
Statuses 

With smoothing 
HS 

Accuracy Precision Recall F1 score 

1 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 80.83 % 78.46 % 85.00 % 81.60 % 
Chopper (on/off) 85.56 % 91.23 % 86.67 % 88.89 % 

Chopper (bal./im.) 92.50 % 91.80 % 93.33 % 92.56 % 

2 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 100 % 100 % 100 % 100 % 
Chopper (on/off) 98.89 % 100 % 98.33 % 99.16 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 % 

3 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 100 % 100 % 100 % 100 % 
Chopper (on/off) 100 % 100 % 100 % 100 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 %   

Table A5 
Accuracy, precision, recall and F1 score obtained with Brute Force (BF) and Harmony Search (HS), with preselection (346 to 380 frequencies), from accelerometer a1, 
using 2 kNN input frequencies, in the five operational statuses studied: engine (low rpm, maximum rpm), thresher (on/off), thresher (balanced/imbalanced), chopper (on/ 
off), and chopper (balanced/imbalanced).  

Preselected 
Frequencies 

(n) 

Operational 
Statuses 

Accuracy Precision Recall F1 score 

BF HS BF HS BF HS BF HS 

365 Engine (low/max.) 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 
361 Thresher (on/off) 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 
380 Thresher (bal./im.) 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 
371 Chopper (on/off) 98.89 % 98.89 % 100 % 100 % 98.33 % 98.33 % 99.16 % 99.16 % 
346 Chopper (bal./im.) 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %   

Table A6 
Accuracy, precision, recall, and F1 score, obtained with kNN + Harmony Search (HS) algorithm and kNN (HS + kNN) in the four accelerometers under the same 
conditions: with preselection (346 to 380 frequencies), using 3 input frequencies, and in the five operational statuses studied: engine (low rpm/maximum rpm); thresher 
(on/off); thresher (balanced/imbalanced); chopper (on/off); chopper (balanced/imbalanced).  

Accelerometer Operational Statuses 
Accuracy 

HS 
Precision 

HS 
Recall 

HS 
F1 score 

HS 

a1 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 100 % 100 % 100 % 100 % 
Chopper (on/off) 100 % 100 % 100 % 100 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 % 

a2 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 100 % 100 % 100 % 100 % 
Chopper (on/off) 100 % 100 % 100 % 100 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 % 

a3 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 95.83 % 95.83 % 96.61 % 95.00 % 
Chopper (on/off) 100 % 100 % 100 % 100 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 % 

a4 

Engine (low/max.) 100 % 100 % 100 % 100 % 
Thresher (on/off) 100 % 100 % 100 % 100 % 

Thresher (bal./im.) 100 % 100 % 100 % 100 % 
Chopper (on/off) 100 % 100 % 100 % 100 % 

Chopper (bal./im.) 100 % 100 % 100 % 100 %  
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